package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.17.1.tar.gz
sha512=9a35311acec2a806730b94ac7dceabc88837f235c52a14c026827d9b89433bd7fa9555a9fc6829aa49edfedb24c8bbaf1411ebf463b74a50aeb17cba47745b6b
doc/src/coq-core.vernac/assumptions.ml.html
Source file assumptions.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* The following definitions are used by the function [assumptions] which gives as an output the set of all axioms and sections variables on which a given term depends in a context (expectingly the Global context) *) (* Initial author: Arnaud Spiwack Module-traversing code: Pierre Letouzey *) open Util open Names open Declarations module NamedDecl = Context.Named.Declaration (** For a constant c in a module sealed by an interface (M:T and not M<:T), [Global.lookup_constant] may return a [constant_body] without body. We fix this by looking in the implementation of the module *) let modcache = ref (MPmap.empty : structure_body MPmap.t) let rec search_mod_label lab = function | [] -> raise Not_found | (l, SFBmodule mb) :: _ when Label.equal l lab -> mb | _ :: fields -> search_mod_label lab fields let rec search_cst_label lab = function | [] -> raise Not_found | (l, SFBconst cb) :: _ when Label.equal l lab -> cb | _ :: fields -> search_cst_label lab fields let rec search_mind_label lab = function | [] -> raise Not_found | (l, SFBmind mind) :: _ when Label.equal l lab -> mind | _ :: fields -> search_mind_label lab fields (* TODO: using [empty_delta_resolver] below is probably slightly incorrect. But: a) I don't see currently what should be used instead b) this shouldn't be critical for Print Assumption. At worse some constants will have a canonical name which is non-canonical, leading to failures in [Global.lookup_constant], but our own [lookup_constant] should work. *) let rec fields_of_functor f subs mp0 args = function | NoFunctor a -> f subs mp0 args a | MoreFunctor (mbid,_,e) -> let open Mod_subst in match args with | [] -> assert false (* we should only encounter applied functors *) | mpa :: args -> let subs = join (map_mbid mbid mpa empty_delta_resolver (*TODO*)) subs in fields_of_functor f subs mp0 args e let rec lookup_module_in_impl mp = match mp with | MPfile _ -> Global.lookup_module mp | MPbound _ -> Global.lookup_module mp | MPdot (mp',lab') -> if ModPath.equal mp' (Global.current_modpath ()) then Global.lookup_module mp else let fields = memoize_fields_of_mp mp' in search_mod_label lab' fields and memoize_fields_of_mp mp = try MPmap.find mp !modcache with Not_found -> let l = fields_of_mp mp in modcache := MPmap.add mp l !modcache; l and fields_of_mp mp = let open Mod_subst in let mb = lookup_module_in_impl mp in let fields,inner_mp,subs = fields_of_mb empty_subst mb [] in let subs = if ModPath.equal inner_mp mp then subs else add_mp inner_mp mp mb.mod_delta subs in Modops.subst_structure subs fields and fields_of_mb subs mb args = match mb.mod_expr with | Algebraic expr -> fields_of_expression subs mb.mod_mp args expr | Struct sign -> fields_of_signature subs mb.mod_mp args sign | Abstract|FullStruct -> fields_of_signature subs mb.mod_mp args mb.mod_type (** The Abstract case above corresponds to [Declare Module] *) and fields_of_signature x = fields_of_functor (fun subs mp0 args struc -> assert (List.is_empty args); (struc, mp0, subs)) x and fields_of_expr subs mp0 args = function | MEident mp -> let mb = lookup_module_in_impl (Mod_subst.subst_mp subs mp) in fields_of_mb subs mb args | MEapply (me1,mp2) -> fields_of_expr subs mp0 (mp2::args) me1 | MEwith _ -> assert false (* no 'with' in [mod_expr] *) and fields_of_expression x = fields_of_functor fields_of_expr x let lookup_constant_in_impl cst fallback = try let mp,lab = KerName.repr (Constant.canonical cst) in let fields = memoize_fields_of_mp mp in (* A module found this way is necessarily closed, in particular our constant cannot be in an opened section : *) search_cst_label lab fields with Not_found -> (* Either: - The module part of the constant isn't registered yet : we're still in it, so the [constant_body] found earlier (if any) was a true axiom. - The label has not been found in the structure. This is an error *) match fallback with | Some cb -> cb | None -> CErrors.anomaly Pp.(str "Print Assumption: unknown constant " ++ Constant.print cst ++ str ".") let lookup_constant cst = let env = Global.env() in if not (Environ.mem_constant cst env) then lookup_constant_in_impl cst None else let cb = Environ.lookup_constant cst env in if Declareops.constant_has_body cb then cb else lookup_constant_in_impl cst (Some cb) let lookup_mind_in_impl mind = try let mp,lab = KerName.repr (MutInd.canonical mind) in let fields = memoize_fields_of_mp mp in search_mind_label lab fields with Not_found -> CErrors.anomaly Pp.(str "Print Assumption: unknown inductive " ++ MutInd.print mind ++ str ".") let lookup_mind mind = let env = Global.env() in if Environ.mem_mind mind env then Environ.lookup_mind mind env else lookup_mind_in_impl mind (** Graph traversal of an object, collecting on the way the dependencies of traversed objects *) let label_of = let open GlobRef in function | ConstRef kn -> Constant.label kn | IndRef (kn,_) | ConstructRef ((kn,_),_) -> MutInd.label kn | VarRef id -> Label.of_id id let fold_with_full_binders g f n acc c = let open Context.Rel.Declaration in let open Constr in match kind c with | Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _ | Int _ | Float _ -> acc | Cast (c,_, t) -> f n (f n acc c) t | Prod (na,t,c) -> f (g (LocalAssum (na,t)) n) (f n acc t) c | Lambda (na,t,c) -> f (g (LocalAssum (na,t)) n) (f n acc t) c | LetIn (na,b,t,c) -> f (g (LocalDef (na,b,t)) n) (f n (f n acc b) t) c | App (c,l) -> Array.fold_left (f n) (f n acc c) l | Proj (_,c) -> f n acc c | Evar _ -> assert false | Case (ci, u, pms, p, iv, c, bl) -> let mib = lookup_mind (fst ci.ci_ind) in let (ci, p, iv, c, bl) = Inductive.expand_case_specif mib (ci, u, pms, p, iv, c, bl) in Array.fold_left (f n) (f n (fold_invert (f n) (f n acc p) iv) c) bl | Fix (_,(lna,tl,bl)) -> let n' = CArray.fold_left2_i (fun i c n t -> g (LocalAssum (n,lift i t)) c) n lna tl in let fd = Array.map2 (fun t b -> (t,b)) tl bl in Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd | CoFix (_,(lna,tl,bl)) -> let n' = CArray.fold_left2_i (fun i c n t -> g (LocalAssum (n,lift i t)) c) n lna tl in let fd = Array.map2 (fun t b -> (t,b)) tl bl in Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd | Array(_u,t,def,ty) -> f n (f n (Array.fold_left (f n) acc t) def) ty let get_constant_body kn = let cb = lookup_constant kn in let access = Library.indirect_accessor in match cb.const_body with | Undef _ | Primitive _ -> None | Def c -> Some c | OpaqueDef o -> match Global.force_proof access o with | c, _ -> Some c | exception _ -> None (* missing delayed body, e.g. in vok mode *) let rec traverse current ctx accu t = let open GlobRef in let open Constr in match Constr.kind t with | Var id -> let body () = id |> Global.lookup_named |> NamedDecl.get_value in traverse_object accu body (VarRef id) | Const (kn, _) -> let body () = get_constant_body kn in traverse_object accu body (ConstRef kn) | Ind ((mind, _) as ind, _) -> traverse_inductive accu mind (IndRef ind) | Construct (((mind, _), _) as cst, _) -> traverse_inductive accu mind (ConstructRef cst) | Meta _ | Evar _ -> assert false | Case (_, _, _, ([|_|], oty), _, c, [||]) when Vars.noccurn 1 oty -> (* non dependent match on an inductive with no constructors *) begin match Constr.kind c with | Const (kn, _) when not (Declareops.constant_has_body (lookup_constant kn)) -> let (curr, data, ax2ty) = accu in let obj = ConstRef kn in let already_in = GlobRef.Map_env.mem obj data in let data = if not already_in then GlobRef.Map_env.add obj None data else data in let ty = (current, ctx, Vars.subst1 mkProp oty) in let ax2ty = try let l = GlobRef.Map_env.find obj ax2ty in GlobRef.Map_env.add obj (ty::l) ax2ty with Not_found -> GlobRef.Map_env.add obj [ty] ax2ty in (GlobRef.Set_env.add obj curr, data, ax2ty) | _ -> fold_with_full_binders Context.Rel.add (traverse current) ctx accu t end | _ -> fold_with_full_binders Context.Rel.add (traverse current) ctx accu t and traverse_object (curr, data, ax2ty) body obj = let data, ax2ty = let already_in = GlobRef.Map_env.mem obj data in if already_in then data, ax2ty else match body () (* Beware: this can be very costly *) with | None -> GlobRef.Map_env.add obj None data, ax2ty | Some body -> let contents,data,ax2ty = traverse (label_of obj) Context.Rel.empty (GlobRef.Set_env.empty,data,ax2ty) body in GlobRef.Map_env.add obj (Some contents) data, ax2ty in (GlobRef.Set_env.add obj curr, data, ax2ty) (** Collects the references occurring in the declaration of mutual inductive definitions. All the constructors and names of a mutual inductive definition share exactly the same dependencies. Also, there is no explicit dependency between mutually defined inductives and constructors. *) and traverse_inductive (curr, data, ax2ty) mind obj = let firstind_ref = (GlobRef.IndRef (mind, 0)) in let label = label_of obj in let data, ax2ty = (* Invariant : I_0 \in data iff I_i \in data iff c_ij \in data where I_0, I_1, ... are in the same mutual definition and c_ij are all their constructors. *) if (* recursive call: *) GlobRef.Set_env.mem firstind_ref curr || (* already in: *) GlobRef.Map_env.mem firstind_ref data then data, ax2ty else (* Take into account potential recursivity of ind in itself *) let curr = GlobRef.Set_env.add firstind_ref GlobRef.Set_env.empty in let accu = (curr, data, ax2ty) in let mib = lookup_mind mind in (* Collects references of parameters *) let param_ctx = mib.mind_params_ctxt in let nparam = List.length param_ctx in let accu = traverse_context label Context.Rel.empty accu param_ctx in (* For each inductive, collects references in their arity and in the type of constructors*) let (contents, data, ax2ty) = Array.fold_left (fun accu oib -> let arity_wo_param = List.rev (List.skipn nparam (List.rev oib.mind_arity_ctxt)) in let accu = traverse_context label param_ctx accu arity_wo_param in Array.fold_left (fun accu cst_typ -> let param_ctx, cst_typ_wo_param = Term.decompose_prod_n_assum nparam cst_typ in traverse label param_ctx accu cst_typ_wo_param) accu oib.mind_user_lc) accu mib.mind_packets in (* Maps all these dependencies to inductives and constructors*) let data = let contents = GlobRef.Set_env.remove firstind_ref contents in Array.fold_left_i (fun n data oib -> let ind = (mind, n) in let data = GlobRef.Map_env.add (GlobRef.IndRef ind) (Some contents) data in Array.fold_left_i (fun k data _ -> GlobRef.Map_env.add (GlobRef.ConstructRef (ind, k+1)) (Some contents) data ) data oib.mind_consnames) data mib.mind_packets in (data, ax2ty) in (GlobRef.Set_env.add obj curr, data, ax2ty) (** Collects references in a rel_context. *) and traverse_context current ctx accu ctxt = snd (Context.Rel.fold_outside (fun decl (ctx, accu) -> match decl with | Context.Rel.Declaration.LocalDef (_,c,t) -> let accu = traverse current ctx (traverse current ctx accu t) c in let ctx = Context.Rel.add decl ctx in ctx, accu | Context.Rel.Declaration.LocalAssum (_,t) -> let accu = traverse current ctx accu t in let ctx = Context.Rel.add decl ctx in ctx, accu) ctxt ~init:(ctx, accu)) let traverse current t = let () = modcache := MPmap.empty in traverse current Context.Rel.empty (GlobRef.Set_env.empty, GlobRef.Map_env.empty, GlobRef.Map_env.empty) t (** Hopefully bullet-proof function to recover the type of a constant. It just ignores all the universe stuff. There are many issues that can arise when considering terms out of any valid environment, so use with caution. *) let type_of_constant cb = cb.Declarations.const_type let uses_uip mib = Array.exists (fun mip -> mip.mind_kelim == InType && mip.mind_relevance == Sorts.Irrelevant && Array.length mip.mind_nf_lc = 1 && List.length (fst mip.mind_nf_lc.(0)) = List.length mib.mind_params_ctxt) mib.mind_packets let assumptions ?(add_opaque=false) ?(add_transparent=false) st gr t = let open Printer in (* Only keep the transitive dependencies *) let (_, graph, ax2ty) = traverse (label_of gr) t in let open GlobRef in let fold obj contents accu = match obj with | VarRef id -> let decl = Global.lookup_named id in if Context.Named.Declaration.is_local_assum decl then let t = Context.Named.Declaration.get_type decl in ContextObjectMap.add (Variable id) t accu else accu | ConstRef kn -> let cb = lookup_constant kn in let accu = if cb.const_typing_flags.check_guarded then accu else let l = try GlobRef.Map_env.find obj ax2ty with Not_found -> [] in ContextObjectMap.add (Axiom (Guarded obj, l)) Constr.mkProp accu in let accu = if cb.const_typing_flags.check_universes then accu else let l = try GlobRef.Map_env.find obj ax2ty with Not_found -> [] in ContextObjectMap.add (Axiom (TypeInType obj, l)) Constr.mkProp accu in if not (Option.has_some contents) then let t = type_of_constant cb in let l = try GlobRef.Map_env.find obj ax2ty with Not_found -> [] in ContextObjectMap.add (Axiom (Constant kn,l)) t accu else if add_opaque && (Declareops.is_opaque cb || not (TransparentState.is_transparent_constant st kn)) then let t = type_of_constant cb in ContextObjectMap.add (Opaque kn) t accu else if add_transparent then let t = type_of_constant cb in ContextObjectMap.add (Transparent kn) t accu else accu | IndRef (m,_) | ConstructRef ((m,_),_) -> let mind = lookup_mind m in let accu = if mind.mind_typing_flags.check_positive then accu else let l = try GlobRef.Map_env.find obj ax2ty with Not_found -> [] in ContextObjectMap.add (Axiom (Positive m, l)) Constr.mkProp accu in let accu = if mind.mind_typing_flags.check_guarded then accu else let l = try GlobRef.Map_env.find obj ax2ty with Not_found -> [] in ContextObjectMap.add (Axiom (Guarded obj, l)) Constr.mkProp accu in let accu = if mind.mind_typing_flags.check_universes then accu else let l = try GlobRef.Map_env.find obj ax2ty with Not_found -> [] in ContextObjectMap.add (Axiom (TypeInType obj, l)) Constr.mkProp accu in let accu = if not (uses_uip mind) then accu else let l = try GlobRef.Map_env.find obj ax2ty with Not_found -> [] in ContextObjectMap.add (Axiom (UIP m, l)) Constr.mkProp accu in accu in GlobRef.Map_env.fold fold graph ContextObjectMap.empty
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>