package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.17.1.tar.gz
sha512=9a35311acec2a806730b94ac7dceabc88837f235c52a14c026827d9b89433bd7fa9555a9fc6829aa49edfedb24c8bbaf1411ebf463b74a50aeb17cba47745b6b
doc/src/coq-core.interp/constrexpr_ops.ml.html
Source file constrexpr_ops.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open Util open Names open Nameops open Libnames open Namegen open Glob_term open Notation open Constrexpr (***********) (* Universes *) let sort_name_expr_eq c1 c2 = match c1, c2 with | CSProp, CSProp | CProp, CProp | CSet, CSet -> true | CType q1, CType q2 -> Libnames.qualid_eq q1 q2 | CRawType u1, CRawType u2 -> Univ.Level.equal u1 u2 | (CSProp|CProp|CSet|CType _|CRawType _), _ -> false let univ_level_expr_eq u1 u2 = Glob_ops.glob_sort_gen_eq sort_name_expr_eq u1 u2 let sort_expr_eq u1 u2 = Glob_ops.glob_sort_gen_eq (List.equal (fun (x,m) (y,n) -> sort_name_expr_eq x y && Int.equal m n)) u1 u2 (***********************) (* For binders parsing *) let binder_kind_eq b1 b2 = match b1, b2 with | Default bk1, Default bk2 -> Glob_ops.binding_kind_eq bk1 bk2 | Generalized (ck1, b1), Generalized (ck2, b2) -> Glob_ops.binding_kind_eq ck1 ck2 && (if b1 then b2 else not b2) | _ -> false let default_binder_kind = Default Explicit let names_of_local_assums bl = List.flatten (List.map (function CLocalAssum(l,_,_)->l|_->[]) bl) let names_of_local_binders bl = List.flatten (List.map (function CLocalAssum(l,_,_)->l|CLocalDef(l,_,_)->[l]|CLocalPattern _ -> assert false) bl) (**********************************************************************) (* Functions on constr_expr *) (* Note: redundant Number representations, such as -0 and +0 (and others), are considered different here. *) let prim_token_eq t1 t2 = match t1, t2 with | Number n1, Number n2 -> NumTok.Signed.equal n1 n2 | String s1, String s2 -> String.equal s1 s2 | (Number _ | String _), _ -> false let explicitation_eq pos1 pos2 = match pos1, pos2 with | ExplByName id1, ExplByName id2 -> Id.equal id1 id2 | ExplByPos n1, ExplByPos n2 -> Int.equal n1 n2 | (ExplByName _ | ExplByPos _), _ -> false let rec cases_pattern_expr_eq p1 p2 = if CAst.(p1.v == p2.v) then true else match CAst.(p1.v, p2.v) with | CPatAlias(a1,i1), CPatAlias(a2,i2) -> CAst.eq Name.equal i1 i2 && cases_pattern_expr_eq a1 a2 | CPatCstr(c1,a1,b1), CPatCstr(c2,a2,b2) -> qualid_eq c1 c2 && Option.equal (List.equal cases_pattern_expr_eq) a1 a2 && List.equal cases_pattern_expr_eq b1 b2 | CPatAtom(r1), CPatAtom(r2) -> Option.equal qualid_eq r1 r2 | CPatOr a1, CPatOr a2 -> List.equal cases_pattern_expr_eq a1 a2 | CPatNotation (inscope1, n1, s1, l1), CPatNotation (inscope2, n2, s2, l2) -> Option.equal notation_with_optional_scope_eq inscope1 inscope2 && notation_eq n1 n2 && cases_pattern_notation_substitution_eq s1 s2 && List.equal cases_pattern_expr_eq l1 l2 | CPatPrim i1, CPatPrim i2 -> prim_token_eq i1 i2 | CPatRecord l1, CPatRecord l2 -> let equal (r1, e1) (r2, e2) = qualid_eq r1 r2 && cases_pattern_expr_eq e1 e2 in List.equal equal l1 l2 | CPatDelimiters(s1,e1), CPatDelimiters(s2,e2) -> String.equal s1 s2 && cases_pattern_expr_eq e1 e2 | _ -> false and cases_pattern_notation_substitution_eq (s1, n1) (s2, n2) = List.equal cases_pattern_expr_eq s1 s2 && List.equal (List.equal cases_pattern_expr_eq) n1 n2 let kinded_cases_pattern_expr_eq (p1,bk1) (p2,bk2) = cases_pattern_expr_eq p1 p2 && Glob_ops.binding_kind_eq bk1 bk2 let eq_universes u1 u2 = match u1, u2 with | None, None -> true | Some l, Some l' -> l = l' | _, _ -> false (* We use a functor to avoid passing the recursion all over the place *) module EqGen (A:sig val constr_expr_eq : constr_expr -> constr_expr -> bool end) = struct open A let args_eq (a1,e1) (a2,e2) = Option.equal (CAst.eq explicitation_eq) e1 e2 && constr_expr_eq a1 a2 let case_expr_eq (e1, n1, p1) (e2, n2, p2) = constr_expr_eq e1 e2 && Option.equal (CAst.eq Name.equal) n1 n2 && Option.equal cases_pattern_expr_eq p1 p2 let branch_expr_eq {CAst.v=(p1, e1)} {CAst.v=(p2, e2)} = List.equal (List.equal cases_pattern_expr_eq) p1 p2 && constr_expr_eq e1 e2 let recursion_order_expr_eq_r r1 r2 = match r1, r2 with | CStructRec i1, CStructRec i2 -> lident_eq i1 i2 | CWfRec (i1,e1), CWfRec (i2,e2) -> constr_expr_eq e1 e2 | CMeasureRec (i1, e1, o1), CMeasureRec (i2, e2, o2) -> Option.equal lident_eq i1 i2 && constr_expr_eq e1 e2 && Option.equal constr_expr_eq o1 o2 | _ -> false let recursion_order_expr_eq r1 r2 = CAst.eq recursion_order_expr_eq_r r1 r2 let local_binder_eq l1 l2 = match l1, l2 with | CLocalDef (n1, e1, t1), CLocalDef (n2, e2, t2) -> CAst.eq Name.equal n1 n2 && constr_expr_eq e1 e2 && Option.equal constr_expr_eq t1 t2 | CLocalAssum (n1, _, e1), CLocalAssum (n2, _, e2) -> (* Don't care about the [binder_kind] *) List.equal (CAst.eq Name.equal) n1 n2 && constr_expr_eq e1 e2 | _ -> false let fix_expr_eq (id1,r1,bl1,a1,b1) (id2,r2,bl2,a2,b2) = (lident_eq id1 id2) && Option.equal recursion_order_expr_eq r1 r2 && List.equal local_binder_eq bl1 bl2 && constr_expr_eq a1 a2 && constr_expr_eq b1 b2 let cofix_expr_eq (id1,bl1,a1,b1) (id2,bl2,a2,b2) = (lident_eq id1 id2) && List.equal local_binder_eq bl1 bl2 && constr_expr_eq a1 a2 && constr_expr_eq b1 b2 let constr_notation_substitution_eq (e1, el1, b1, bl1) (e2, el2, b2, bl2) = List.equal constr_expr_eq e1 e2 && List.equal (List.equal constr_expr_eq) el1 el2 && List.equal kinded_cases_pattern_expr_eq b1 b2 && List.equal (List.equal local_binder_eq) bl1 bl2 let instance_eq (x1,c1) (x2,c2) = Id.equal x1.CAst.v x2.CAst.v && constr_expr_eq c1 c2 let constr_expr_eq e1 e2 = if CAst.(e1.v == e2.v) then true else match CAst.(e1.v, e2.v) with | CRef (r1,u1), CRef (r2,u2) -> qualid_eq r1 r2 && eq_universes u1 u2 | CFix(id1,fl1), CFix(id2,fl2) -> lident_eq id1 id2 && List.equal fix_expr_eq fl1 fl2 | CCoFix(id1,fl1), CCoFix(id2,fl2) -> lident_eq id1 id2 && List.equal cofix_expr_eq fl1 fl2 | CProdN(bl1,a1), CProdN(bl2,a2) -> List.equal local_binder_eq bl1 bl2 && constr_expr_eq a1 a2 | CLambdaN(bl1,a1), CLambdaN(bl2,a2) -> List.equal local_binder_eq bl1 bl2 && constr_expr_eq a1 a2 | CLetIn(na1,a1,t1,b1), CLetIn(na2,a2,t2,b2) -> CAst.eq Name.equal na1 na2 && constr_expr_eq a1 a2 && Option.equal constr_expr_eq t1 t2 && constr_expr_eq b1 b2 | CAppExpl((r1,u1),al1), CAppExpl((r2,u2),al2) -> qualid_eq r1 r2 && eq_universes u1 u2 && List.equal constr_expr_eq al1 al2 | CApp(e1,al1), CApp(e2,al2) -> constr_expr_eq e1 e2 && List.equal args_eq al1 al2 | CProj(e1,(p1,u1),al1,c1), CProj(e2,(p2,u2),al2,c2) -> e1 = (e2:bool) && qualid_eq p1 p2 && eq_universes u1 u2 && List.equal args_eq al1 al2 && constr_expr_eq c1 c2 | CRecord l1, CRecord l2 -> let field_eq (r1, e1) (r2, e2) = qualid_eq r1 r2 && constr_expr_eq e1 e2 in List.equal field_eq l1 l2 | CCases(_,r1,a1,brl1), CCases(_,r2,a2,brl2) -> (* Don't care about the case_style *) Option.equal constr_expr_eq r1 r2 && List.equal case_expr_eq a1 a2 && List.equal branch_expr_eq brl1 brl2 | CLetTuple (n1, (m1, e1), t1, b1), CLetTuple (n2, (m2, e2), t2, b2) -> List.equal (CAst.eq Name.equal) n1 n2 && Option.equal (CAst.eq Name.equal) m1 m2 && Option.equal constr_expr_eq e1 e2 && constr_expr_eq t1 t2 && constr_expr_eq b1 b2 | CIf (e1, (n1, r1), t1, f1), CIf (e2, (n2, r2), t2, f2) -> constr_expr_eq e1 e2 && Option.equal (CAst.eq Name.equal) n1 n2 && Option.equal constr_expr_eq r1 r2 && constr_expr_eq t1 t2 && constr_expr_eq f1 f2 | CHole _, CHole _ -> true | CPatVar i1, CPatVar i2 -> Id.equal i1 i2 | CEvar (id1, c1), CEvar (id2, c2) -> Id.equal id1.CAst.v id2.CAst.v && List.equal instance_eq c1 c2 | CSort s1, CSort s2 -> sort_expr_eq s1 s2 | CCast(c1,k1,t1), CCast(c2,k2,t2) -> constr_expr_eq c1 c2 && Glob_ops.cast_kind_eq k1 k2 && constr_expr_eq t1 t2 | CNotation(inscope1, n1, s1), CNotation(inscope2, n2, s2) -> Option.equal notation_with_optional_scope_eq inscope1 inscope2 && notation_eq n1 n2 && constr_notation_substitution_eq s1 s2 | CPrim i1, CPrim i2 -> prim_token_eq i1 i2 | CGeneralization (bk1, e1), CGeneralization (bk2, e2) -> Glob_ops.binding_kind_eq bk1 bk2 && constr_expr_eq e1 e2 | CDelimiters(s1,e1), CDelimiters(s2,e2) -> String.equal s1 s2 && constr_expr_eq e1 e2 | CArray(u1,t1,def1,ty1), CArray(u2,t2,def2,ty2) -> Array.equal constr_expr_eq t1 t2 && constr_expr_eq def1 def2 && constr_expr_eq ty1 ty2 && eq_universes u1 u2 | (CRef _ | CFix _ | CCoFix _ | CProdN _ | CLambdaN _ | CLetIn _ | CAppExpl _ | CApp _ | CProj _ | CRecord _ | CCases _ | CLetTuple _ | CIf _ | CHole _ | CPatVar _ | CEvar _ | CSort _ | CCast _ | CNotation _ | CPrim _ | CGeneralization _ | CDelimiters _ | CArray _), _ -> false end let constr_expr_eq_gen eq = let module Eq = EqGen(struct let constr_expr_eq = eq end) in Eq.constr_expr_eq module Eq = EqGen(struct let rec constr_expr_eq c1 c2 = constr_expr_eq_gen constr_expr_eq c1 c2 end) include Eq let constr_loc c = CAst.(c.loc) let cases_pattern_expr_loc cp = CAst.(cp.loc) let local_binder_loc = let open CAst in function | CLocalAssum ({ loc } ::_,_,t) | CLocalDef ( { loc },t,None) -> Loc.merge_opt loc (constr_loc t) | CLocalDef ( { loc },b,Some t) -> Loc.merge_opt loc (Loc.merge_opt (constr_loc b) (constr_loc t)) | CLocalAssum ([],_,_) -> assert false | CLocalPattern { loc } -> loc let local_binders_loc bll = match bll with | [] -> None | h :: l -> Loc.merge_opt (local_binder_loc h) (local_binder_loc (List.last bll)) (** Folds and maps *) let is_constructor id = match Smartlocate.global_of_extended_global (Nametab.locate_extended (qualid_of_ident id)) with | exception Not_found -> false | None -> false | Some gref -> Globnames.isConstructRef gref let rec cases_pattern_fold_names f h nacc pt = match CAst.(pt.v) with | CPatRecord l -> List.fold_left (fun nacc (r, cp) -> cases_pattern_fold_names f h nacc cp) nacc l | CPatAlias (pat,{CAst.v=na}) -> Name.fold_right (fun na (n,acc) -> (f na n,acc)) na (cases_pattern_fold_names f h nacc pat) | CPatOr (patl) -> List.fold_left (cases_pattern_fold_names f h) nacc patl | CPatCstr (_,patl1,patl2) -> List.fold_left (cases_pattern_fold_names f h) (Option.fold_left (List.fold_left (cases_pattern_fold_names f h)) nacc patl1) patl2 | CPatNotation (_,_,(patl,patll),patl') -> List.fold_left (cases_pattern_fold_names f h) (List.fold_left (cases_pattern_fold_names f h) nacc (patl@List.flatten patll)) patl' | CPatDelimiters (_,pat) -> cases_pattern_fold_names f h nacc pat | CPatAtom (Some qid) when qualid_is_ident qid && not (is_constructor @@ qualid_basename qid) -> let (n, acc) = nacc in (f (qualid_basename qid) n, acc) | CPatPrim _ | CPatAtom _ -> nacc | CPatCast (p,t) -> let (n, acc) = nacc in cases_pattern_fold_names f h (n, h acc t) p let ids_of_pattern_list p = fst (List.fold_left (List.fold_left (cases_pattern_fold_names Id.Set.add (fun () _ -> ()))) (Id.Set.empty,()) p) let ids_of_cases_tomatch tms = List.fold_right (fun (_, ona, indnal) l -> Option.fold_right (fun t ids -> fst (cases_pattern_fold_names Id.Set.add (fun () _ -> ()) (ids,()) t)) indnal (Option.fold_right (CAst.with_val (Name.fold_right Id.Set.add)) ona l)) tms Id.Set.empty let rec fold_local_binders g f n acc b = let open CAst in function | CLocalAssum (nal,bk,t)::l -> let nal = List.(map (fun {v} -> v) nal) in let n' = List.fold_right (Name.fold_right g) nal n in f n (fold_local_binders g f n' acc b l) t | CLocalDef ( { v = na },c,t)::l -> Option.fold_left (f n) (f n (fold_local_binders g f (Name.fold_right g na n) acc b l) c) t | CLocalPattern pat :: l -> let n, acc = cases_pattern_fold_names g (f n) (n,acc) pat in fold_local_binders g f n acc b l | [] -> f n acc b let fold_constr_expr_with_binders g f n acc = CAst.with_val (function | CAppExpl ((_,_),l) -> List.fold_left (f n) acc l | CApp (t,l) -> List.fold_left (f n) (f n acc t) (List.map fst l) | CProj (e,_,l,t) -> f n (List.fold_left (f n) acc (List.map fst l)) t | CProdN (l,b) | CLambdaN (l,b) -> fold_local_binders g f n acc b l | CLetIn (na,a,t,b) -> f (Name.fold_right g (na.CAst.v) n) (Option.fold_left (f n) (f n acc a) t) b | CCast (a,_,b) -> f n (f n acc a) b | CNotation (_,_,(l,ll,bl,bll)) -> (* The following is an approximation: we don't know exactly if an ident is binding nor to which subterms bindings apply *) let acc = List.fold_left (f n) acc (l@List.flatten ll) in List.fold_left (fun acc bl -> fold_local_binders g f n acc (CAst.make @@ CHole (None,IntroAnonymous,None)) bl) acc bll | CGeneralization (_,c) -> f n acc c | CDelimiters (_,a) -> f n acc a | CHole _ | CEvar _ | CPatVar _ | CSort _ | CPrim _ | CRef _ -> acc | CRecord l -> List.fold_left (fun acc (id, c) -> f n acc c) acc l | CCases (sty,rtnpo,al,bl) -> let ids = ids_of_cases_tomatch al in let acc = Option.fold_left (f (Id.Set.fold g ids n)) acc rtnpo in let acc = List.fold_left (f n) acc (List.map (fun (fst,_,_) -> fst) al) in List.fold_right (fun {CAst.v=(patl,rhs)} acc -> let ids = ids_of_pattern_list patl in f (Id.Set.fold g ids n) acc rhs) bl acc | CLetTuple (nal,(ona,po),b,c) -> let n' = List.fold_right (CAst.with_val (Name.fold_right g)) nal n in f (Option.fold_right (CAst.with_val (Name.fold_right g)) ona n') (f n acc b) c | CIf (c,(ona,po),b1,b2) -> let acc = f n (f n (f n acc b1) b2) c in Option.fold_left (f (Option.fold_right (CAst.with_val (Name.fold_right g)) ona n)) acc po | CFix (_,l) -> let n' = List.fold_right (fun ( { CAst.v = id },_,_,_,_) -> g id) l n in List.fold_right (fun (_,ro,lb,t,c) acc -> fold_local_binders g f n' (fold_local_binders g f n acc t lb) c lb) l acc | CCoFix (_,_) -> Feedback.msg_warning (strbrk "Capture check in multiple binders not done"); acc | CArray (_u,t,def,ty) -> f n (f n (Array.fold_left (f n) acc t) def) ty ) let free_vars_of_constr_expr c = let rec aux bdvars l = function | { CAst.v = CRef (qid, _) } when qualid_is_ident qid -> let id = qualid_basename qid in if Id.List.mem id bdvars then l else Id.Set.add id l | c -> fold_constr_expr_with_binders (fun a l -> a::l) aux bdvars l c in aux [] Id.Set.empty c let names_of_constr_expr c = let vars = ref Id.Set.empty in let rec aux () () = function | { CAst.v = CRef (qid, _) } when qualid_is_ident qid -> let id = qualid_basename qid in vars := Id.Set.add id !vars | c -> fold_constr_expr_with_binders (fun a () -> vars := Id.Set.add a !vars) aux () () c in aux () () c; !vars let occur_var_constr_expr id c = Id.Set.mem id (free_vars_of_constr_expr c) let rec fold_map_cases_pattern f h acc (CAst.{v=pt;loc} as p) = match pt with | CPatRecord l -> let acc, l = List.fold_left_map (fun acc (r, cp) -> let acc, cp = fold_map_cases_pattern f h acc cp in acc, (r, cp)) acc l in acc, CAst.make ?loc (CPatRecord l) | CPatAlias (pat,({CAst.v=na} as lna)) -> let acc, p = fold_map_cases_pattern f h acc pat in let acc = Name.fold_right f na acc in acc, CAst.make ?loc (CPatAlias (pat,lna)) | CPatOr patl -> let acc, patl = List.fold_left_map (fold_map_cases_pattern f h) acc patl in acc, CAst.make ?loc (CPatOr patl) | CPatCstr (c,patl1,patl2) -> let acc, patl1 = Option.fold_left_map (List.fold_left_map (fold_map_cases_pattern f h)) acc patl1 in let acc, patl2 = List.fold_left_map (fold_map_cases_pattern f h) acc patl2 in acc, CAst.make ?loc (CPatCstr (c,patl1,patl2)) | CPatNotation (sc,ntn,(patl,patll),patl') -> let acc, patl = List.fold_left_map (fold_map_cases_pattern f h) acc patl in let acc, patll = List.fold_left_map (List.fold_left_map (fold_map_cases_pattern f h)) acc patll in let acc, patl' = List.fold_left_map (fold_map_cases_pattern f h) acc patl' in acc, CAst.make ?loc (CPatNotation (sc,ntn,(patl,patll),patl')) | CPatDelimiters (d,pat) -> let acc, p = fold_map_cases_pattern f h acc pat in acc, CAst.make ?loc (CPatDelimiters (d,pat)) | CPatAtom (Some qid) when qualid_is_ident qid && not (is_constructor @@ qualid_basename qid) -> f (qualid_basename qid) acc, p | CPatPrim _ | CPatAtom _ -> (acc,p) | CPatCast (pat,t) -> let acc, pat = fold_map_cases_pattern f h acc pat in let t = h acc t in acc, CAst.make ?loc (CPatCast (pat,t)) (* Used in correctness and interface *) let map_binder g e nal = List.fold_right (CAst.with_val (Name.fold_right g)) nal e let fold_map_local_binders f g e bl = (* TODO: avoid variable capture in [t] by some [na] in [List.tl nal] *) let open CAst in let h (e,bl) = function CLocalAssum(nal,k,ty) -> (map_binder g e nal, CLocalAssum(nal,k,f e ty)::bl) | CLocalDef( { loc ; v = na } as cna ,c,ty) -> (Name.fold_right g na e, CLocalDef(cna,f e c,Option.map (f e) ty)::bl) | CLocalPattern pat -> let e, pat = fold_map_cases_pattern g f e pat in (e, CLocalPattern pat::bl) in let (e,rbl) = List.fold_left h (e,[]) bl in (e, List.rev rbl) let map_constr_expr_with_binders g f e = CAst.map (function | CAppExpl (r,l) -> CAppExpl (r,List.map (f e) l) | CApp (a,l) -> CApp (f e a,List.map (fun (a,i) -> (f e a,i)) l) | CProj (expl,p,l,a) -> CProj (expl,p,List.map (fun (a,i) -> (f e a,i)) l,f e a) | CProdN (bl,b) -> let (e,bl) = fold_map_local_binders f g e bl in CProdN (bl,f e b) | CLambdaN (bl,b) -> let (e,bl) = fold_map_local_binders f g e bl in CLambdaN (bl,f e b) | CLetIn (na,a,t,b) -> CLetIn (na,f e a,Option.map (f e) t,f (Name.fold_right g (na.CAst.v) e) b) | CCast (a,k,c) -> CCast (f e a, k, f e c) | CNotation (inscope,n,(l,ll,bl,bll)) -> (* This is an approximation because we don't know what binds what *) CNotation (inscope,n,(List.map (f e) l,List.map (List.map (f e)) ll, bl, List.map (fun bl -> snd (fold_map_local_binders f g e bl)) bll)) | CGeneralization (b,c) -> CGeneralization (b,f e c) | CDelimiters (s,a) -> CDelimiters (s,f e a) | CHole _ | CEvar _ | CPatVar _ | CSort _ | CPrim _ | CRef _ as x -> x | CRecord l -> CRecord (List.map (fun (id, c) -> (id, f e c)) l) | CCases (sty,rtnpo,a,bl) -> let bl = List.map (fun {CAst.v=(patl,rhs);loc} -> let ids = ids_of_pattern_list patl in CAst.make ?loc (patl,f (Id.Set.fold g ids e) rhs)) bl in let ids = ids_of_cases_tomatch a in let po = Option.map (f (Id.Set.fold g ids e)) rtnpo in CCases (sty, po, List.map (fun (tm,x,y) -> f e tm,x,y) a,bl) | CLetTuple (nal,(ona,po),b,c) -> let e' = List.fold_right (CAst.with_val (Name.fold_right g)) nal e in let e'' = Option.fold_right (CAst.with_val (Name.fold_right g)) ona e in CLetTuple (nal,(ona,Option.map (f e'') po),f e b,f e' c) | CIf (c,(ona,po),b1,b2) -> let e' = Option.fold_right (CAst.with_val (Name.fold_right g)) ona e in CIf (f e c,(ona,Option.map (f e') po),f e b1,f e b2) | CFix (id,dl) -> CFix (id,List.map (fun (id,n,bl,t,d) -> let (e',bl') = fold_map_local_binders f g e bl in let t' = f e' t in (* Note: fix names should be inserted before the arguments... *) let e'' = List.fold_left (fun e ({ CAst.v = id },_,_,_,_) -> g id e) e' dl in let d' = f e'' d in (id,n,bl',t',d')) dl) | CCoFix (id,dl) -> CCoFix (id,List.map (fun (id,bl,t,d) -> let (e',bl') = fold_map_local_binders f g e bl in let t' = f e' t in let e'' = List.fold_left (fun e ({ CAst.v = id },_,_,_) -> g id e) e' dl in let d' = f e'' d in (id,bl',t',d')) dl) | CArray (u, t, def, ty) -> CArray (u, Array.map (f e) t, f e def, f e ty) ) (* Used in constrintern *) let rec replace_vars_constr_expr l r = match r with | { CAst.loc; v = CRef (qid,us) } as x when qualid_is_ident qid -> let id = qualid_basename qid in (try CAst.make ?loc @@ CRef (qualid_of_ident ?loc (Id.Map.find id l),us) with Not_found -> x) | cn -> map_constr_expr_with_binders Id.Map.remove replace_vars_constr_expr l cn (* Returns the ranges of locs of the notation that are not occupied by args *) (* and which are then occupied by proper symbols of the notation (or spaces) *) let locs_of_notation ?loc locs ntn = let unloc loc = Option.cata Loc.unloc (0,0) loc in let (bl, el) = unloc loc in let locs = List.map unloc locs in let rec aux pos = function | [] -> if Int.equal pos el then [] else [(pos,el)] | (ba,ea)::l -> if Int.equal pos ba then aux ea l else (pos,ba)::aux ea l in aux bl (List.sort (fun l1 l2 -> fst l1 - fst l2) locs) let ntn_loc ?loc (args,argslist,binders,binderslist) = locs_of_notation ?loc (List.map constr_loc (args@List.flatten argslist)@ List.map (fun (x,_) -> cases_pattern_expr_loc x) binders@ List.map local_binders_loc binderslist) let patntn_loc ?loc (args,argslist) = locs_of_notation ?loc (List.map cases_pattern_expr_loc (args@List.flatten argslist)) let error_invalid_pattern_notation ?loc () = CErrors.user_err ?loc (str "Invalid notation for pattern.") (* Interpret the index of a recursion order annotation *) let split_at_annot bl na = let open CAst in let names = List.map (fun { v } -> v) (names_of_local_assums bl) in match na with | None -> begin match names with | [] -> CErrors.user_err (Pp.str "A fixpoint needs at least one parameter.") | _ -> ([], bl) end | Some { loc; v = id } -> let rec aux acc = function | CLocalAssum (bls, k, t) as x :: rest -> let test { CAst.v = na } = match na with | Name id' -> Id.equal id id' | Anonymous -> false in let l, r = List.split_when test bls in begin match r with | [] -> aux (x :: acc) rest | _ -> let ans = match l with | [] -> acc | _ -> CLocalAssum (l, k, t) :: acc in (List.rev ans, CLocalAssum (r, k, t) :: rest) end | CLocalDef ({ CAst.v = na },_,_) as x :: rest -> if Name.equal (Name id) na then CErrors.user_err ?loc (Id.print id ++ str" must be a proper parameter and not a local definition.") else aux (x :: acc) rest | CLocalPattern _ :: rest -> Loc.raise ?loc (Gramlib.Stream.Error "pattern with quote not allowed after fix") | [] -> CErrors.user_err ?loc (str "No parameter named " ++ Id.print id ++ str".") in aux [] bl (** Pseudo-constructors *) let mkIdentC id = CAst.make @@ CRef (qualid_of_ident id,None) let mkRefC r = CAst.make @@ CRef (r,None) let mkCastC (a,k,t) = CAst.make @@ CCast (a,k,t) let mkLambdaC (idl,bk,a,b) = CAst.make @@ CLambdaN ([CLocalAssum (idl,bk,a)],b) let mkLetInC (id,a,t,b) = CAst.make @@ CLetIn (id,a,t,b) let mkProdC (idl,bk,a,b) = CAst.make @@ CProdN ([CLocalAssum (idl,bk,a)],b) let mkAppC (f,l) = let l = List.map (fun x -> (x,None)) l in match CAst.(f.v) with | CApp (g,l') -> CAst.make @@ CApp (g, l' @ l) | _ -> CAst.make @@ CApp (f, l) let mkProdCN ?loc bll c = if bll = [] then c else CAst.make ?loc @@ CProdN (bll,c) let mkLambdaCN ?loc bll c = if bll = [] then c else CAst.make ?loc @@ CLambdaN (bll,c) let mkCProdN ?loc bll c = CAst.make ?loc @@ CProdN (bll,c) let mkCLambdaN ?loc bll c = CAst.make ?loc @@ CLambdaN (bll,c) let coerce_reference_to_id qid = if qualid_is_ident qid then qualid_basename qid else CErrors.user_err ?loc:qid.CAst.loc (str "This expression should be a simple identifier.") let coerce_to_id = function | { CAst.loc; v = CRef (qid,None) } when qualid_is_ident qid -> CAst.make ?loc @@ qualid_basename qid | { CAst.loc; _ } -> CErrors.user_err ?loc (str "This expression should be a simple identifier.") let coerce_to_name = function | { CAst.loc; v = CRef (qid,None) } when qualid_is_ident qid -> CAst.make ?loc @@ Name (qualid_basename qid) | { CAst.loc; v = CHole (None,IntroAnonymous,None) } -> CAst.make ?loc Anonymous | { CAst.loc; _ } -> CErrors.user_err ?loc (str "This expression should be a name.") let mkCPatOr ?loc = function | [pat] -> pat | disjpat -> CAst.make ?loc @@ (CPatOr disjpat) let mkAppPattern ?loc p lp = if List.is_empty lp then p else let open CAst in make ?loc @@ (match p.v with | CPatAtom (Some r) -> CPatCstr (r, None, lp) | CPatCstr (r, None, l2) -> CErrors.user_err ?loc:p.loc (Pp.str "Nested applications not supported.") | CPatCstr (r, l1, l2) -> CPatCstr (r, l1 , l2@lp) | CPatNotation (inscope, n, s, l) -> CPatNotation (inscope, n , s, l@lp) | _ -> CErrors.user_err ?loc:p.loc (Pp.str "Such pattern cannot have arguments.")) let rec coerce_to_cases_pattern_expr c = CAst.map_with_loc (fun ?loc -> function | CRef (r,None) -> CPatAtom (Some r) | CHole (None,IntroAnonymous,None) -> CPatAtom None | CLetIn ({CAst.loc;v=Name id},b,None,{ CAst.v = CRef (qid,None) }) when qualid_is_ident qid && Id.equal id (qualid_basename qid) -> CPatAlias (coerce_to_cases_pattern_expr b, CAst.(make ?loc @@ Name id)) | CApp (p,args) when List.for_all (fun (_,e) -> e=None) args -> (mkAppPattern (coerce_to_cases_pattern_expr p) (List.map (fun (a,_) -> coerce_to_cases_pattern_expr a) args)).CAst.v | CAppExpl ((r,i),args) -> CPatCstr (r,Some (List.map coerce_to_cases_pattern_expr args),[]) | CNotation (inscope,ntn,(c,cl,[],[])) -> CPatNotation (inscope,ntn,(List.map coerce_to_cases_pattern_expr c, List.map (List.map coerce_to_cases_pattern_expr) cl),[]) | CPrim p -> CPatPrim p | CRecord l -> CPatRecord (List.map (fun (r,p) -> (r,coerce_to_cases_pattern_expr p)) l) | CDelimiters (s,p) -> CPatDelimiters (s,coerce_to_cases_pattern_expr p) | CCast (p,Constr.DEFAULTcast, t) -> CPatCast (coerce_to_cases_pattern_expr p,t) | _ -> CErrors.user_err ?loc (str "This expression should be coercible to a pattern.")) c
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>