package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.17.0.tar.gz
sha512=2f77bcb5211018b5d46320fd39fd34450eeb654aca44551b28bb50a2364398c4b34587630b6558db867ecfb63b246fd3e29dc2375f99967ff62bc002db9c3250
doc/src/micromega_plugin/linsolve.ml.html
Source file linsolve.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (** An equation is of the following form a1.x1 + a2.x2 = c *) type var = int type id = int module Itv = struct let debug = false type t = int * int (* We only consider closed intervals *) exception Empty let output o (lb,ub) = Printf.fprintf o "[%i,%i]" lb ub let wf o (lb,ub) = if lb <= ub then () else Printf.fprintf o "error %a\n" output (lb,ub) (** [mul_cst c (lb,ub)] requires c > 0 *) let mul_cst c (lb,ub) = (c * lb, c * ub) (** [opp (lb,ub)] is multplication by -1 *) let opp (lb,ub) = (-ub,-lb) let opp i1 = let i = opp i1 in if debug then Printf.printf "opp %a -> %a\n" output i1 output i; i (** [div (lb,ub) c] requires c > 0, lb >= 0 *) let div (lb,ub) c = let lb = lb /c + (if lb mod c = 0 then 0 else 1) in let ub = ub / c in if lb <= ub then (lb,ub) else raise Empty let div i c = try let r = div i c in if debug then Printf.printf "%a div %i -> %a\n" output i c output r; r with Empty -> if debug then Printf.printf "%a div %i -> Empty \n" output i c; raise Empty let add (lb1,ub1) (lb2,ub2) = (lb1+lb2,ub1+ub2) let add i1 i2 = let i = add i1 i2 in if debug then Printf.printf "%a add %a -> %a\n" output i1 output i2 output i; i let inter : t -> t -> t = fun (lb1,ub1) (lb2,ub2) -> let ub = max lb1 lb2 in let lb = min ub1 ub2 in if ub <= lb then (ub,lb) else raise Empty let inter i1 i2 = try let i = inter i1 i2 in if debug then Printf.printf "%a inter %a -> %a\n" output i1 output i2 output i; i with Empty -> if debug then Printf.printf "%a inter %a -> Empty\n" output i1 output i2 ; raise Empty (* [enum (lb,ub)] is only defined for finite intervals *) let enum (lb,ub) = match Int.compare lb ub with | 0 -> (lb,None) | _ -> (lb,Some (lb+1,ub)) let range (lb,ub) = ub - lb + 1 let top = (min_int,max_int) let lt i1 i2 = range i1 < range i2 end module ItvMap = struct module M = Map.Make(Int) include M let refine_with v i m = try let i0 = M.find v m in let i' = Itv.inter i i0 in (Itv.lt i' i0,i',M.add v i' m) with Not_found -> (true, i, M.add v i m) let pick m = let (x,i,r) = fold (fun v i (v',i',r') -> let r = Itv.range i in if r < r' then (v,i,r) else (v',i',r')) m (min_int,Itv.top,max_int) in if x = min_int then raise Not_found else (x,i) let output o m = Printf.fprintf o "["; iter (fun k (lb,ub) -> Printf.fprintf o "x%i -> [%i,%i] " k lb ub) m; Printf.fprintf o "]"; end exception Unsat module Eqn = struct type t = (var * int) list * int let empty = ([],0) let rec output_lin o l = match l with | [] -> Printf.fprintf o "0" | [x,v] -> Printf.fprintf o "%i.x%i" v x | (x,v)::l' -> Printf.fprintf o "%i.x%i + %a" v x output_lin l' let normalise (l,c) = match l with | [] -> if c = 0 then None else raise Unsat | _ -> Some(l,c) let rec no_dup l = match l with | [] -> true | (x,v)::l -> try let _ = List.assoc x l in false with Not_found -> no_dup l let add (l1,c1) (l2,c2) = (l1@l2,c1+c2) let add e1 e2 = let r = add e1 e2 in if no_dup (fst r) then () else Printf.printf "add(duplicate)%a %a" output_lin (fst e1) output_lin (fst e2) ; r let itv_of_ax m (var,coe) = Itv.mul_cst coe (ItvMap.find var m) let itv_list m l = List.fold_left (fun i (var,coe) -> Itv.add i (itv_of_ax m (var,coe))) (0,0) l let get_remove x l = let l' = List.remove_assoc x l in let c = try List.assoc x l with Not_found -> 0 in (c,l') end type eqn = Eqn.t open Eqn let debug = false (** Given an equation a1.x1 + ... an.xn = c, bound all the variables xi in [0; c/ai] *) let init_bound m (v,c) = match v with | [] -> if c = 0 then m else raise Unsat | [x,v] -> let (_,_,m) = ItvMap.refine_with x (Itv.div (c,c) v) m in m | _ -> List.fold_left (fun m (var,coe) -> let (_,_,m) = ItvMap.refine_with var (0,c / coe) m in m) m v let init_bounds sys = List.fold_left init_bound ItvMap.empty sys let init_bounds sys = let m = init_bounds sys in if debug then Printf.printf "init_bound : %a\n" ItvMap.output m; m (* [refine_bound p m acc (v,c)] improves the bounds of the equation v + acc = c *) let rec refine_bound p m acc (v,c) = Itv.wf stdout acc; match v with | [] -> (m,p) | (var,coe)::v' -> if debug then Printf.printf "Refining %i.x%i + %a + %a = %i\n" coe var Itv.output acc output_lin v' c; let itv_acc_l = Itv.inter (0,c) (Itv.add acc (itv_list m v')) in let itv_coe_var = Itv.add (c,c) (Itv.opp itv_acc_l) in let i = Itv.div itv_coe_var coe in let (b,i',m) = ItvMap.refine_with var i m in refine_bound (p || b) m (Itv.add (Itv.mul_cst coe i') acc) (v',c) let refine_bounds p m l = List.fold_left (fun (m,p) eqn -> refine_bound p m (0,0) eqn) (m,p) l let refine_until_fix m l = let rec iter_refine m = let (m',b) = refine_bounds false m l in if b then iter_refine m' else m' in iter_refine m let subst x a l = let subst_eqn acc (v,c) = let (coe,v') = Eqn.get_remove x v in let (v',c') = (v', c - coe * a) in match v' with | [] -> if c' = 0 then acc else raise Unsat | _ -> (v',c')::acc in List.fold_left subst_eqn [] l let output_list elt o l = Printf.fprintf o "["; List.iter (fun e -> Printf.fprintf o "%a; " elt e) l; Printf.fprintf o "]" let output_equations o l = let output_equation o (l,c) = Printf.fprintf o "%a = %i" output_lin l c in output_list output_equation o l let output_intervals o m = ItvMap.iter (fun k v -> Printf.fprintf o "x%i:%a " k Itv.output v) m type solution = (var * int) list let solve_system l = let rec solve m l = if debug then Printf.printf "Solve %a\n" output_equations l; match l with | [] -> [m] (* we have a solution *) | _ -> try let m' = refine_until_fix m l in try if debug then Printf.printf "Refined %a\n" ItvMap.output m' ; let (k,i) = ItvMap.pick m' in let (v,itv') = Itv.enum i in (* We recursively solve using k = v *) let sol1 = List.map (ItvMap.add k (v,v)) (solve (ItvMap.remove k m) (subst k v l)) in let sol2 = match itv' with | None -> [] | Some itv' -> (* We recursively solve with a smaller interval *) solve (ItvMap.add k itv' m) l in sol1 @ sol2 with | Not_found -> Printf.printf "NOT FOUND %a %a\n" output_equations l output_intervals m'; raise Not_found with (Unsat | Itv.Empty) as e -> begin if debug then Printf.printf "Unsat detected %s\n" (Printexc.to_string e); [] end in try let l = CList.map_filter Eqn.normalise l in solve (init_bounds l) l with Itv.Empty | Unsat -> [] let enum_sol m = let rec augment_sols x (lb,ub) s = let slb = if lb = 0 then s else List.rev_map (fun s -> (x,lb)::s) s in if lb = ub then slb else let sl = augment_sols x (lb+1,ub) s in List.rev_append slb sl in ItvMap.fold augment_sols m [[]] let enum_sols l = List.fold_left (fun s m -> List.rev_append (enum_sol m) s) [] l let solve_and_enum l = enum_sols (solve_system l) let output_solution o s = let output_var_coef o (x,v) = Printf.fprintf o "x%i:%i" x v in output_list output_var_coef o s ; Printf.fprintf o "\n" let output_solutions o l = output_list output_solution o l (** Incremental construction of systems of equations *) open Mutils type system = Eqn.t IMap.t let empty : system = IMap.empty let set_constant (idx:int) (c:int) (s:system) : Eqn.t = let e = try IMap.find idx s with |Not_found -> Eqn.empty in (fst e,c) let make_mon (idx:int) (v:var) (c:int) (s:system) : system = IMap.add idx ([v,c],0) s let merge (s1:system) (s2:system) : system = IMap.merge (fun k e1 e2 -> match e1 , e2 with | None , None -> None | None , Some e | Some e , None -> Some e | Some e1, Some e2 -> Some (Eqn.add e1 e2)) s1 s2
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>