package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.17.0.tar.gz
sha512=2f77bcb5211018b5d46320fd39fd34450eeb654aca44551b28bb50a2364398c4b34587630b6558db867ecfb63b246fd3e29dc2375f99967ff62bc002db9c3250
doc/src/coq-core.pretyping/typing.ml.html
Source file typing.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) module CVars = Vars open Pp open CErrors open Util open Term open Constr open Context open Environ open EConstr open Vars open Reductionops open Inductive open Inductiveops open Typeops open Arguments_renaming open Pretype_errors open Context.Rel.Declaration module GR = Names.GlobRef let meta_type env evd mv = let ty = try Evd.meta_ftype evd mv with Not_found -> anomaly (str "unknown meta ?" ++ str (Nameops.string_of_meta mv) ++ str ".") in meta_instance env (create_meta_instance_subst evd) ty let inductive_type_knowing_parameters env sigma (ind,u) jl = let u = Unsafe.to_instance u in let mspec = lookup_mind_specif env ind in let paramstyp = Array.map_to_list (fun j () -> let s = Reductionops.sort_of_arity env sigma j.uj_type in EConstr.ESorts.kind sigma s) jl in Inductive.type_of_inductive_knowing_parameters (mspec,u) paramstyp let type_judgment env sigma j = match EConstr.kind sigma (whd_all env sigma j.uj_type) with | Sort s -> sigma, {utj_val = j.uj_val; utj_type = ESorts.kind sigma s } | Evar ev -> let (sigma,s) = Evardefine.define_evar_as_sort env sigma ev in sigma, { utj_val = j.uj_val; utj_type = s } | _ -> error_not_a_type env sigma j let assumption_of_judgment env sigma j = try let sigma, j = type_judgment env sigma j in sigma, j.utj_val with Type_errors.TypeError _ | PretypeError _ -> error_assumption env sigma j let judge_of_apply env sigma funj argjv = let rec apply_rec sigma n subs typ = function | [] -> let typ = Vars.esubst Vars.lift_substituend subs typ in sigma, { uj_val = mkApp (j_val funj, Array.map j_val argjv); uj_type = typ } | hj::restjl -> let sigma, c1, subs, c2 = match EConstr.kind sigma typ with | Prod (_, c1, c2) -> (* Fast path *) let c1 = Vars.esubst Vars.lift_substituend subs c1 in let subs = Esubst.subs_cons (Vars.make_substituend hj.uj_val) subs in sigma, c1, subs, c2 | _ -> let typ = Vars.esubst Vars.lift_substituend subs typ in let subs = Esubst.subs_cons (Vars.make_substituend hj.uj_val) (Esubst.subs_id 0) in match EConstr.kind sigma (whd_all env sigma typ) with | Prod (_, c1, c2) -> sigma, c1, subs, c2 | Evar ev -> let (sigma,t) = Evardefine.define_evar_as_product env sigma ev in let (_, c1, c2) = destProd sigma t in sigma, c1, subs, c2 | _ -> error_cant_apply_not_functional env sigma funj argjv in match Evarconv.unify_leq_delay env sigma hj.uj_type c1 with | sigma -> apply_rec sigma (n+1) subs c2 restjl | exception Evarconv.UnableToUnify _ -> error_cant_apply_bad_type env sigma (n, c1, hj.uj_type) funj argjv in apply_rec sigma 1 (Esubst.subs_id 0) funj.uj_type (Array.to_list argjv) let checked_appvect env sigma f args = let mk c = Retyping.get_judgment_of env sigma c in let sigma, j = judge_of_apply env sigma (mk f) (Array.map mk args) in sigma, j.uj_val let checked_applist env sigma f args = checked_appvect env sigma f (Array.of_list args) let judge_of_applied_inductive_knowing_parameters_nocheck env sigma funj ind argjv = let ar = inductive_type_knowing_parameters env sigma ind argjv in let typ = hnf_prod_appvect env sigma (EConstr.of_constr ar) (Array.map j_val argjv) in sigma, { uj_val = (mkApp (j_val funj, Array.map j_val argjv)); uj_type = typ } let judge_of_applied_inductive_knowing_parameters env sigma funj ind argjv = let (sigma, j) = judge_of_apply env sigma funj argjv in judge_of_applied_inductive_knowing_parameters_nocheck env sigma funj ind argjv let check_branch_types env sigma (ind,u) cj (lfj,explft) = if not (Int.equal (Array.length lfj) (Array.length explft)) then error_number_branches env sigma cj (Array.length explft); Array.fold_left2_i (fun i sigma lfj explft -> match Evarconv.unify_leq_delay env sigma lfj.uj_type explft with | sigma -> sigma | exception Evarconv.UnableToUnify _ -> error_ill_formed_branch env sigma cj.uj_val ((ind,i+1),u) lfj.uj_type explft) sigma lfj explft let max_sort l = if List.mem_f Sorts.family_equal InType l then InType else if List.mem_f Sorts.family_equal InSet l then InSet else InProp let is_correct_arity env sigma c pj ind specif params = let arsign = make_arity_signature env sigma true (make_ind_family (ind,params)) in let allowed_sorts = sorts_below (elim_sort specif) in let error () = Pretype_errors.error_elim_arity env sigma ind c None in let rec srec env sigma pt ar = let pt' = whd_all env sigma pt in match EConstr.kind sigma pt', ar with | Prod (na1,a1,t), (LocalAssum (_,a1'))::ar' -> begin match Evarconv.unify_leq_delay env sigma a1 a1' with | exception Evarconv.UnableToUnify _ -> error () | sigma -> srec (push_rel (LocalAssum (na1,a1)) env) sigma t ar' end | Sort s, [] -> let s = ESorts.kind sigma s in if not (List.mem_f Sorts.family_equal (Sorts.family s) allowed_sorts) then error () else sigma, s | Evar (ev,_), [] -> let sigma, s = Evd.fresh_sort_in_family sigma (max_sort allowed_sorts) in let sigma = Evd.define ev (mkSort s) sigma in sigma, s | _, (LocalDef _ as d)::ar' -> srec (push_rel d env) sigma (lift 1 pt') ar' | _ -> error () in srec env sigma pj.uj_type (List.rev arsign) let lambda_applist_assum sigma n c l = let rec app n subst t l = if Int.equal n 0 then if l == [] then substl subst t else anomaly (Pp.str "Not enough arguments.") else match EConstr.kind sigma t, l with | Lambda(_,_,c), arg::l -> app (n-1) (arg::subst) c l | LetIn(_,b,_,c), _ -> app (n-1) (substl subst b::subst) c l | _ -> anomaly (Pp.str "Not enough lambda/let's.") in app n [] c l let type_case_branches env sigma (ind,largs) pj c = let specif = lookup_mind_specif env (fst ind) in let nparams = inductive_params specif in let (params,realargs) = List.chop nparams largs in let p = pj.uj_val in let params = List.map EConstr.Unsafe.to_constr params in let sigma, ps = is_correct_arity env sigma c pj ind specif params in let lc = build_branches_type ind specif params (EConstr.to_constr ~abort_on_undefined_evars:false sigma p) in let lc = Array.map EConstr.of_constr lc in let n = (snd specif).Declarations.mind_nrealdecls in let ty = whd_betaiota env sigma (lambda_applist_assum sigma (n+1) p (realargs@[c])) in sigma, (lc, ty, Sorts.relevance_of_sort ps) let judge_of_case env sigma case ci pj iv cj lfj = let ((ind, u), spec) = try find_mrectype env sigma cj.uj_type with Not_found -> error_case_not_inductive env sigma cj in let indspec = ((ind, EInstance.kind sigma u), spec) in let sigma, (bty,rslty,rci) = type_case_branches env sigma indspec pj cj.uj_val in let () = check_case_info env (fst indspec) rci ci in let sigma = check_branch_types env sigma (fst indspec) cj (lfj,bty) in let () = if (match iv with | NoInvert -> false | CaseInvert _ -> true) != should_invert_case env ci then Type_errors.error_bad_invert env in sigma, { uj_val = mkCase case; uj_type = rslty } let check_type_fixpoint ?loc env sigma lna lar vdefj = let lt = Array.length vdefj in assert (Int.equal (Array.length lar) lt); Array.fold_left2_i (fun i sigma defj ar -> match Evarconv.unify_leq_delay env sigma defj.uj_type (lift lt ar) with | sigma -> sigma | exception Evarconv.UnableToUnify _ -> error_ill_typed_rec_body ?loc env sigma i lna vdefj lar) sigma vdefj lar (* FIXME: might depend on the level of actual parameters!*) let check_allowed_sort env sigma ind c p = let specif = lookup_mind_specif env (fst ind) in let sorts = elim_sort specif in let pj = Retyping.get_judgment_of env sigma p in let _, s = splay_prod env sigma pj.uj_type in let ksort = match EConstr.kind sigma s with | Sort s -> Sorts.family (ESorts.kind sigma s) | _ -> error_elim_arity env sigma ind c None in if not (Sorts.family_leq ksort sorts) then let s = inductive_sort_family (snd specif) in error_elim_arity env sigma ind c (Some (pj, sorts, ksort, s)) else Sorts.relevance_of_sort_family ksort let check_actual_type env sigma cj t = try Evarconv.unify_leq_delay env sigma cj.uj_type t with Evarconv.UnableToUnify (sigma,e) -> error_actual_type env sigma cj t e let judge_of_cast env sigma cj k tj = let expected_type = tj.utj_val in let sigma = check_actual_type env sigma cj expected_type in sigma, { uj_val = mkCast (cj.uj_val, k, expected_type); uj_type = expected_type } let check_fix env sigma pfix = let inj c = EConstr.to_constr ~abort_on_undefined_evars:false sigma c in let (idx, (ids, cs, ts)) = pfix in check_fix env (idx, (ids, Array.map inj cs, Array.map inj ts)) let check_cofix env sigma pcofix = let inj c = EConstr.to_constr sigma c in let (idx, (ids, cs, ts)) = pcofix in check_cofix env (idx, (ids, Array.map inj cs, Array.map inj ts)) (* The typing machine with universes and existential variables. *) let judge_of_sprop = { uj_val = EConstr.mkSProp; uj_type = EConstr.type1 } let judge_of_prop = { uj_val = EConstr.mkProp; uj_type = EConstr.mkSort Sorts.type1 } let judge_of_set = { uj_val = EConstr.mkSet; uj_type = EConstr.mkSort Sorts.type1 } let judge_of_type u = let uu = Univ.Universe.super u in { uj_val = EConstr.mkType u; uj_type = EConstr.mkType uu } let judge_of_relative env v = Environ.on_judgment EConstr.of_constr (judge_of_relative env v) let type_of_variable env id = EConstr.of_constr (type_of_variable env id) let judge_of_variable env id = Environ.on_judgment EConstr.of_constr (judge_of_variable env id) let judge_of_projection env sigma p cj = let pty = lookup_projection p env in let (ind,u), args = try find_mrectype env sigma cj.uj_type with Not_found -> error_case_not_inductive env sigma cj in let u = EInstance.kind sigma u in let ty = EConstr.of_constr (CVars.subst_instance_constr u pty) in let ty = substl (cj.uj_val :: List.rev args) ty in {uj_val = EConstr.mkProj (p,cj.uj_val); uj_type = ty} let judge_of_abstraction env name var j = let r = Sorts.relevance_of_sort var.utj_type in { uj_val = mkLambda (make_annot name r, var.utj_val, j.uj_val); uj_type = mkProd (make_annot name r, var.utj_val, j.uj_type) } let judge_of_product env name t1 t2 = let r = Sorts.relevance_of_sort t1.utj_type in let s = sort_of_product env t1.utj_type t2.utj_type in { uj_val = mkProd (make_annot name r, t1.utj_val, t2.utj_val); uj_type = mkSort s } let judge_of_letin env name defj typj j = let r = Sorts.relevance_of_sort typj.utj_type in { uj_val = mkLetIn (make_annot name r, defj.uj_val, typj.utj_val, j.uj_val) ; uj_type = subst1 defj.uj_val j.uj_type } let check_hyps_inclusion env sigma x hyps = let env = Environ.set_universes (Evd.universes sigma) env in let evars = Evd.evar_handler sigma in Typeops.check_hyps_inclusion env ~evars x hyps let type_of_constant env sigma (c,u) = let open Declarations in let cb = Environ.lookup_constant c env in let () = check_hyps_inclusion env sigma (GR.ConstRef c) cb.const_hyps in let u = EInstance.kind sigma u in let ty, csts = Environ.constant_type env (c,u) in let sigma = Evd.add_constraints sigma csts in sigma, (EConstr.of_constr (rename_type ty (GR.ConstRef c))) let type_of_inductive env sigma (ind,u) = let open Declarations in let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in let () = check_hyps_inclusion env sigma (GR.IndRef ind) mib.mind_hyps in let u = EInstance.kind sigma u in let ty, csts = Inductive.constrained_type_of_inductive (specif,u) in let sigma = Evd.add_constraints sigma csts in sigma, (EConstr.of_constr (rename_type ty (GR.IndRef ind))) let type_of_constructor env sigma ((ind,_ as ctor),u) = let open Declarations in let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in let () = check_hyps_inclusion env sigma (GR.IndRef ind) mib.mind_hyps in let u = EInstance.kind sigma u in let ty, csts = Inductive.constrained_type_of_constructor (ctor,u) specif in let sigma = Evd.add_constraints sigma csts in sigma, (EConstr.of_constr (rename_type ty (GR.ConstructRef ctor))) let judge_of_int env v = Environ.on_judgment EConstr.of_constr (judge_of_int env v) let judge_of_float env v = Environ.on_judgment EConstr.of_constr (judge_of_float env v) let judge_of_array env sigma u tj defj tyj = let ulev = match Univ.Instance.to_array u with | [|u|] -> u | _ -> assert false in let sigma = Evd.set_leq_sort env sigma tyj.utj_type (Sorts.sort_of_univ (Univ.Universe.make ulev)) in let check_one sigma j = check_actual_type env sigma j tyj.utj_val in let sigma = check_one sigma defj in let sigma = Array.fold_left check_one sigma tj in let arr = EConstr.of_constr @@ type_of_array env u in let j = make_judge (mkArray(EInstance.make u, Array.map j_val tj, defj.uj_val, tyj.utj_val)) (mkApp (arr, [|tyj.utj_val|])) in sigma, j (* cstr must be in n.f. w.r.t. evars and execute returns a judgement where both the term and type are in n.f. *) let rec execute env sigma cstr = let cstr = whd_evar sigma cstr in match EConstr.kind sigma cstr with | Meta n -> sigma, { uj_val = cstr; uj_type = meta_type env sigma n } | Evar ev -> let ty = EConstr.existential_type sigma ev in let sigma, jty = execute env sigma ty in let sigma, jty = assumption_of_judgment env sigma jty in sigma, { uj_val = cstr; uj_type = jty } | Rel n -> sigma, judge_of_relative env n | Var id -> sigma, judge_of_variable env id | Const c -> let sigma, ty = type_of_constant env sigma c in sigma, make_judge cstr ty | Ind ind -> let sigma, ty = type_of_inductive env sigma ind in sigma, make_judge cstr ty | Construct ctor -> let sigma, ty = type_of_constructor env sigma ctor in sigma, make_judge cstr ty | Case (ci, u, pms, p, iv, c, lf) -> let case = (ci, u, pms, p, iv, c, lf) in let (ci, p, iv, c, lf) = EConstr.expand_case env sigma case in let sigma, cj = execute env sigma c in let sigma, pj = execute env sigma p in let sigma, lfj = execute_array env sigma lf in let sigma = match iv with | NoInvert -> sigma | CaseInvert {indices} -> let args = Array.append pms indices in let t = mkApp (mkIndU (ci.ci_ind,u), args) in let sigma, tj = execute env sigma t in let sigma, tj = type_judgment env sigma tj in let sigma = check_actual_type env sigma cj tj.utj_val in sigma in judge_of_case env sigma case ci pj iv cj lfj | Fix ((vn,i as vni),recdef) -> let sigma, (_,tys,_ as recdef') = execute_recdef env sigma recdef in let fix = (vni,recdef') in check_fix env sigma fix; sigma, make_judge (mkFix fix) tys.(i) | CoFix (i,recdef) -> let sigma, (_,tys,_ as recdef') = execute_recdef env sigma recdef in let cofix = (i,recdef') in check_cofix env sigma cofix; sigma, make_judge (mkCoFix cofix) tys.(i) | Sort s -> begin match ESorts.kind sigma s with | SProp -> if Environ.sprop_allowed env then sigma, judge_of_sprop else error_disallowed_sprop env sigma | Prop -> sigma, judge_of_prop | Set -> sigma, judge_of_set | Type u -> sigma, judge_of_type u end | Proj (p, c) -> let sigma, cj = execute env sigma c in sigma, judge_of_projection env sigma p cj | App (f,args) -> let sigma, jl = execute_array env sigma args in (match EConstr.kind sigma f with | Ind (ind, u) when EInstance.is_empty u && Environ.template_polymorphic_ind ind env -> let sigma, fj = execute env sigma f in judge_of_applied_inductive_knowing_parameters env sigma fj (ind, u) jl | _ -> (* No template polymorphism *) let sigma, fj = execute env sigma f in judge_of_apply env sigma fj jl) | Lambda (name,c1,c2) -> let sigma, j = execute env sigma c1 in let sigma, var = type_judgment env sigma j in let name = check_binder_annot var.utj_type name in let env1 = push_rel (LocalAssum (name, var.utj_val)) env in let sigma, j' = execute env1 sigma c2 in sigma, judge_of_abstraction env1 name.binder_name var j' | Prod (name,c1,c2) -> let sigma, j = execute env sigma c1 in let sigma, varj = type_judgment env sigma j in let name = check_binder_annot varj.utj_type name in let env1 = push_rel (LocalAssum (name, varj.utj_val)) env in let sigma, j' = execute env1 sigma c2 in let sigma, varj' = type_judgment env1 sigma j' in sigma, judge_of_product env name.binder_name varj varj' | LetIn (name,c1,c2,c3) -> let sigma, j1 = execute env sigma c1 in let sigma, j2 = execute env sigma c2 in let sigma, j2 = type_judgment env sigma j2 in let sigma, _ = judge_of_cast env sigma j1 DEFAULTcast j2 in let name = check_binder_annot j2.utj_type name in let env1 = push_rel (LocalDef (name, j1.uj_val, j2.utj_val)) env in let sigma, j3 = execute env1 sigma c3 in sigma, judge_of_letin env name.binder_name j1 j2 j3 | Cast (c,k,t) -> let sigma, cj = execute env sigma c in let sigma, tj = execute env sigma t in let sigma, tj = type_judgment env sigma tj in judge_of_cast env sigma cj k tj | Int i -> sigma, judge_of_int env i | Float f -> sigma, judge_of_float env f | Array(u,t,def,ty) -> let sigma, tyj = execute env sigma ty in let sigma, tyj = type_judgment env sigma tyj in let sigma, defj = execute env sigma def in let sigma, tj = execute_array env sigma t in judge_of_array env sigma (EInstance.kind sigma u) tj defj tyj and execute_recdef env sigma (names,lar,vdef) = let sigma, larj = execute_array env sigma lar in let sigma, lara = Array.fold_left_map (assumption_of_judgment env) sigma larj in let env1 = push_rec_types (names,lara,vdef) env in let sigma, vdefj = execute_array env1 sigma vdef in let vdefv = Array.map j_val vdefj in let sigma = check_type_fixpoint env1 sigma names lara vdefj in sigma, (names,lara,vdefv) and execute_array env = Array.fold_left_map (execute env) let check env sigma c t = let sigma, j = execute env sigma c in check_actual_type env sigma j t (* Sort of a type *) let sort_of env sigma c = let sigma, j = execute env sigma c in let sigma, a = type_judgment env sigma j in sigma, a.utj_type (* Try to solve the existential variables by typing *) let type_of ?(refresh=false) env sigma c = let sigma, j = execute env sigma c in (* side-effect on evdref *) if refresh then Evarsolve.refresh_universes ~onlyalg:true (Some false) env sigma j.uj_type else sigma, j.uj_type let solve_evars env sigma c = let sigma, j = execute env sigma c in (* side-effect on evdref *) sigma, nf_evar sigma j.uj_val let _ = Evarconv.set_solve_evars (fun env sigma c -> solve_evars env sigma c) type change_kind = Same | Changed of {bodyonly : bool Lazy.t } let merge_changes a b = match a,b with | Same, v | v, Same -> v | Changed {bodyonly=a}, Changed {bodyonly=b} -> Changed {bodyonly = lazy (Lazy.force a && Lazy.force b)} let unchanged = function | Same -> true | Changed _ -> false let bodyonly = function | Same -> true | Changed {bodyonly} -> Lazy.force bodyonly let judge_of_apply_against env sigma changedf funj argjv = let rec apply_rec sigma changedf n subs typ = function | [] -> let typ = Vars.esubst Vars.lift_substituend subs typ in sigma, { uj_val = mkApp (j_val funj, Array.map (fun (_,j) -> j_val j) argjv); uj_type = typ } | (changedh,hj)::restjl -> let sigma, c1, subs, c2 = match EConstr.kind sigma typ with | Prod (_, c1, c2) -> (* Fast path *) let c1 = Vars.esubst Vars.lift_substituend subs c1 in let subs = Esubst.subs_cons (Vars.make_substituend hj.uj_val) subs in sigma, c1, subs, c2 | _ -> let typ = Vars.esubst Vars.lift_substituend subs typ in let subs = Esubst.subs_cons (Vars.make_substituend hj.uj_val) (Esubst.subs_id 0) in match EConstr.kind sigma (whd_all env sigma typ) with | Prod (_, c1, c2) -> sigma, c1, subs, c2 | Evar ev -> let (sigma,t) = Evardefine.define_evar_as_product env sigma ev in let (_, c1, c2) = destProd sigma t in sigma, c1, subs, c2 | _ -> error_cant_apply_not_functional env sigma funj (Array.map snd argjv) in if bodyonly changedf then begin match changedh with | Same -> apply_rec sigma changedf (n+1) subs c2 restjl | Changed {bodyonly=lazy true} -> (* TODO if non dependent product then changedf else bodyonly = false *) apply_rec sigma (Changed {bodyonly=lazy false}) (n+1) subs c2 restjl | Changed {bodyonly=lazy false} -> match Evarconv.unify_leq_delay env sigma hj.uj_type c1 with | sigma -> apply_rec sigma (Changed {bodyonly=lazy false}) (n+1) subs c2 restjl | exception Evarconv.UnableToUnify _ -> error_cant_apply_bad_type env sigma (n, c1, hj.uj_type) funj (Array.map snd argjv) end else match Evarconv.unify_leq_delay env sigma hj.uj_type c1 with | sigma -> apply_rec sigma changedf (n+1) subs c2 restjl | exception Evarconv.UnableToUnify _ -> error_cant_apply_bad_type env sigma (n, c1, hj.uj_type) funj (Array.map snd argjv) in apply_rec sigma changedf 1 (Esubst.subs_id 0) funj.uj_type (Array.to_list argjv) (* Assuming "env |- good : some type", infer "env |- c : other type" *) let rec recheck_against env sigma good c = if EConstr.eq_constr sigma good c then sigma, Same, make_judge c (Retyping.get_type_of env sigma c) else let assume_unchanged_type sigma = let gt = Retyping.get_type_of env sigma good in sigma, Changed {bodyonly=Lazy.from_val true}, make_judge c gt in let maybe_changed (sigma, j) = let bodyonly = lazy (EConstr.eq_constr sigma (Retyping.get_type_of env sigma good) j.uj_type) in let change = Changed {bodyonly} in sigma, change, j in let default () = maybe_changed (execute env sigma c) in match kind sigma good, kind sigma c with (* No subterms *) | _, (Meta _ | Rel _ | Var _ | Const _ | Ind _ | Construct _ | Sort _ | Int _ | Float _) -> default () (* Evar (todo deal with Evar differently??? execute recurses on its type) others: too annoying for now *) | _, (Evar _ | Fix _ | CoFix _ | LetIn _ | Array _) -> default () | Case (gci, gu, gpms, gp, giv, gc, glf), Case (ci, u, pms, p, iv, c, lf) -> let (gci, gp, giv, gc, glf) = EConstr.expand_case env sigma (gci, gu, gpms, gp, giv, gc, glf) in let case = (ci, u, pms, p, iv, c, lf) in let (ci, p, iv, c, lf) = EConstr.expand_case env sigma case in let sigma, changedc, cj = recheck_against env sigma gc c in let sigma, changedp, pj = recheck_against env sigma gp p in let (sigma, changedlf), lfj = if Array.length glf <> Array.length lf then Array.fold_left_map (fun (sigma,changed) c -> let sigma, j = execute env sigma c in (sigma, changed), j) (sigma, Changed {bodyonly=lazy false}) lf else Array.fold_left2_map (fun (sigma,changed) good c -> let sigma, changed', t = recheck_against env sigma good c in (sigma, merge_changes changed changed'), t) (sigma,Same) glf lf in let sigma, changediv = match giv, iv with | _, NoInvert -> sigma, Same | NoInvert, CaseInvert {indices} -> (* likely bug but accept for now *) let args = Array.append pms indices in let t = mkApp (mkIndU (ci.ci_ind,u), args) in let sigma, tj = execute env sigma t in let sigma, tj = type_judgment env sigma tj in let sigma = check_actual_type env sigma cj tj.utj_val in sigma, Changed {bodyonly=Lazy.from_val false} | CaseInvert {indices=gindices}, CaseInvert {indices} -> let gargs = Array.append gpms gindices in let args = Array.append pms indices in let gt = mkApp (mkIndU (gci.ci_ind,u), gargs) in let t = mkApp (mkIndU (ci.ci_ind,u), args) in let sigma, changediv, tj = recheck_against env sigma gt t in let sigma, tj = type_judgment env sigma tj in let sigma = check_actual_type env sigma cj tj.utj_val in sigma, changediv in if unchanged changedc && unchanged changedp && unchanged changediv && bodyonly changedlf then assume_unchanged_type sigma else maybe_changed (judge_of_case env sigma case ci pj iv cj lfj) | Proj (gp, gc), Proj (p, c) -> if not (QProjection.equal env gp p) then default () else let sigma, changed, c = recheck_against env sigma gc c in maybe_changed (sigma, judge_of_projection env sigma p c) | App (gf, gargs), App (f, args) -> if Array.length gargs <> Array.length args then let sigma, _, fj = recheck_against env sigma gf f in let sigma, jl = execute_array env sigma args in (match EConstr.kind sigma f with | Ind (ind, u) when EInstance.is_empty u && Environ.template_polymorphic_ind ind env -> maybe_changed (judge_of_applied_inductive_knowing_parameters env sigma fj (ind, u) jl) | _ -> (* No template polymorphism *) maybe_changed (judge_of_apply env sigma fj jl)) else begin let (sigma, changedargs), jl = Array.fold_left2_map (fun (sigma,changed) good c -> let sigma, changed', t = recheck_against env sigma good c in (sigma, merge_changes changed changed'), (changed', t)) (sigma,Same) gargs args in let sigma, changedf, fj = recheck_against env sigma gf f in if unchanged changedargs && bodyonly changedf then assume_unchanged_type sigma else (match EConstr.kind sigma f with | Ind (ind, u) when EInstance.is_empty u && Environ.template_polymorphic_ind ind env -> let sigma, _ = judge_of_apply_against env sigma changedf fj jl in let jl = Array.map snd jl in maybe_changed (judge_of_applied_inductive_knowing_parameters_nocheck env sigma fj (ind, u) jl) | _ -> (* No template polymorphism *) maybe_changed (judge_of_apply_against env sigma changedf fj jl)) end | Lambda (_, gc1, gc2), Lambda (name, c1, c2) -> let sigma, changedj, j = recheck_against env sigma gc1 c1 in let sigma, var = type_judgment env sigma j in let name = check_binder_annot var.utj_type name in let env1 = push_rel (LocalAssum (name, var.utj_val)) env in let sigma, changedj', j' = if unchanged changedj then recheck_against env1 sigma gc2 c2 else let sigma, j' = execute env1 sigma c2 in sigma, Changed {bodyonly=lazy false}, j' in sigma, merge_changes changedj' changedj, judge_of_abstraction env1 name.binder_name var j' | Prod (_, gc1, gc2), Prod (name, c1, c2) -> let sigma, changedj, j = recheck_against env sigma gc1 c1 in let sigma, var = type_judgment env sigma j in let name = check_binder_annot var.utj_type name in let env1 = push_rel (LocalAssum (name, var.utj_val)) env in let sigma, changedj', j' = if unchanged changedj then recheck_against env1 sigma gc2 c2 else let sigma, j' = execute env1 sigma c2 in sigma, Changed {bodyonly=lazy false}, j' in let sigma, j' = type_judgment env1 sigma j' in sigma, merge_changes changedj' changedj, judge_of_product env1 name.binder_name var j' | Cast (gc, _, gt), Cast (c, k, t) -> let sigma, changedc, cj = recheck_against env sigma gc c in let sigma, changedt, tj = recheck_against env sigma gt t in if unchanged changedt && bodyonly changedc then assume_unchanged_type sigma else let sigma, tj = type_judgment env sigma tj in maybe_changed (judge_of_cast env sigma cj k tj) | _, (Case _ | App _ | Lambda _ | Prod _ | Cast _ | Proj _) -> default () let recheck_against env sigma a b = let sigma, _, j = recheck_against env sigma a b in sigma, j.uj_type
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>