package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v3.11.tar.gz
md5=897b5af970ba48508a2ee001d90e8869
sha512=d4bf1219cc32017d6dee1462c9a6c555e3da833512cdc6e176a92e3a229497734cf6bc0cf2c2abd30183de860858468115c000c719742162e78080074149d317
doc/src/containers/CCInt.ml.html
Source file CCInt.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
(* This file is free software, part of containers. See file "license" for more details. *) [@@@ifge 4.07] [@@@else_] module Stdlib = Pervasives [@@@endif] [@@@ifge 4.08] include Int [@@@endif] type t = int type 'a iter = ('a -> unit) -> unit let zero = 0 let one = 1 let minus_one = -1 let add = ( + ) let sub = ( - ) let mul = ( * ) let div = ( / ) let succ = succ let pred = pred let abs = abs let max_int = max_int let min_int = min_int let equal (a : int) b = Stdlib.( = ) a b let compare (a : int) b = compare a b (* use FNV: https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function *) let hash (n : int) : int = let offset_basis = 0xcbf29ce484222325L in let prime = 0x100000001b3L in let h = ref offset_basis in for k = 0 to 7 do (h := Int64.(mul !h prime)); (* h := h xor (k-th byte of n) *) h := Int64.(logxor !h (of_int ((n lsr (k * 8)) land 0xff))) done; Int64.to_int !h land max_int (* truncate back to int and remove sign *) let range i j yield = let rec up i j yield = if i = j then yield i else ( yield i; up (i + 1) j yield ) and down i j yield = if i = j then yield i else ( yield i; down (i - 1) j yield ) in if i <= j then up i j yield else down i j yield let range' i j yield = if i < j then range i (j - 1) yield else if i = j then () else range i (j + 1) yield let sign i = compare i 0 let neg i = -i let pow a b = let rec aux acc = function | 1 -> acc | n -> if n mod 2 = 0 then aux (acc * acc) (n / 2) else acc * aux (acc * acc) (n / 2) in match b with | 0 -> if a = 0 then raise (Invalid_argument "pow: undefined value 0^0") else 1 | b when b < 0 -> raise (Invalid_argument "pow: can't raise int to negative power") | b -> aux a b module Infix : sig val ( = ) : t -> t -> bool val ( <> ) : t -> t -> bool val ( < ) : t -> t -> bool val ( > ) : t -> t -> bool val ( <= ) : t -> t -> bool val ( >= ) : t -> t -> bool val ( -- ) : t -> t -> t iter val ( --^ ) : t -> t -> t iter val ( + ) : t -> t -> t val ( - ) : t -> t -> t val ( ~- ) : t -> t val ( * ) : t -> t -> t val ( / ) : t -> t -> t val ( ** ) : t -> t -> t val ( mod ) : t -> t -> t val ( land ) : t -> t -> t val ( lor ) : t -> t -> t val ( lxor ) : t -> t -> t val lnot : t -> t val ( lsl ) : t -> int -> t val ( lsr ) : t -> int -> t val ( asr ) : t -> int -> t end = struct include Stdlib let ( -- ) = range let ( --^ ) = range' let ( ** ) = pow end include Infix let min : t -> t -> t = Stdlib.min let max : t -> t -> t = Stdlib.max let floor_div a n = if a < 0 && n >= 0 then ((a + 1) / n) - 1 else if a > 0 && n < 0 then ((a - 1) / n) - 1 else a / n let bool_neq (a : bool) b = Stdlib.( <> ) a b let rem a n = let y = a mod n in if bool_neq (y < 0) (n < 0) && y <> 0 then y + n else y type 'a printer = Format.formatter -> 'a -> unit type 'a random_gen = Random.State.t -> 'a let random n st = Random.State.int st n let random_small = random 100 let random_range i j st = i + random (j - i) st let pp fmt = Format.pp_print_int fmt let most_significant_bit = -1 lxor (-1 lsr 1) let to_string = string_of_int let of_string s = try Some (int_of_string s) with Failure _ -> None let of_string_exn = Stdlib.int_of_string let to_float = float_of_int let of_float = int_of_float type output = char -> unit (* abstract printer *) let to_binary_gen (out : output) n = let n = if n < 0 then ( out '-'; -n ) else n in out '0'; out 'b'; let rec loop started bit n = if bit = 0 then ( if not started then out '0' ) else ( let b = n land bit in if b = 0 then ( if started then out '0'; loop started (bit lsr 1) n ) else ( out '1'; loop true (bit lsr 1) n ) ) in loop false most_significant_bit n let pp_binary out n = to_binary_gen (Format.pp_print_char out) n let to_string_binary n = let buf = Buffer.create 16 in to_binary_gen (Buffer.add_char buf) n; Buffer.contents buf let range_by ~step i j yield = let rec range i j yield = if i = j then yield i else ( yield i; range (i + step) j yield ) in if step = 0 then raise (Invalid_argument "CCInt.range_by") else if if step > 0 then i > j else i < j then () else range i (((j - i) / step * step) + i) yield (* from https://en.wikipedia.org/wiki/Hamming_weight //This uses fewer arithmetic operations than any other known //implementation on machines with slow multiplication. //It uses 17 arithmetic operations. int popcount_2(uint64_t x) { x -= (x >> 1) & m1; //put count of each 2 bits into those 2 bits x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits x = (x + (x >> 4)) & m4; //put count of each 8 bits into those 8 bits x += x >> 8; //put count of each 16 bits into their lowest 8 bits x += x >> 16; //put count of each 32 bits into their lowest 8 bits x += x >> 32; //put count of each 64 bits into their lowest 8 bits return x & 0x7f; } m1 = 0x5555555555555555 m2 = 0x3333333333333333 m4 = 0x0f0f0f0f0f0f0f0f *) let popcount (b : int) : int = let m1 = 0x5555555555555555L in let m2 = 0x3333333333333333L in let m4 = 0x0f0f0f0f0f0f0f0fL in let open Int64 in let b = of_int b in (* int->int64 *) let b = logand b 0x7fffffffffffffffL in (* remove sign bit, we deal with uint64 here *) let b = sub b (logand (shift_right_logical b 1) m1) in let b = add (logand b m2) (logand (shift_right_logical b 2) m2) in let b = logand (add b (shift_right_logical b 4)) m4 in let b = add b (shift_right_logical b 8) in let b = add b (shift_right_logical b 16) in let b = add b (shift_right_logical b 32) in let b = logand b 0x7fL in to_int b let logand = ( land ) let logor = ( lor ) let logxor = ( lxor ) let lognot = lnot let shift_left = ( lsl ) let shift_right = ( asr ) let shift_right_logical = ( lsr )
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>