package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v3.0.tar.gz
md5=00ba20a8c8824991cab96aff8f8e5a3c
sha512=4126045d58b9408eecaaad005c334081ade151f291dafc32ce9a33e8f796d41f72df62b617528f272996f3c93cb9b4293545ab86ac416288960f5a2b60b41932
doc/src/containers/CCHeap.ml.html
Source file CCHeap.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Leftist Heaps} *) type 'a iter = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a printer = Format.formatter -> 'a -> unit type 'a ktree = unit -> [`Nil | `Node of 'a * 'a ktree list] module type PARTIAL_ORD = sig type t val leq : t -> t -> bool (** [leq x y] shall return [true] iff [x] is lower or equal to [y]. *) end module type TOTAL_ORD = sig type t val compare : t -> t -> int (** [compare a b] shall return a negative value if [a] is smaller than [b], [0] if [a] and [b] are equal or a positive value if [a] is greater than [b] *) end (*$inject module H = CCHeap.Make(struct type t = int let leq x y = x<=y end) let rec is_sorted l = match l with | [_] | [] -> true | x::((y::_) as l') -> x <= y && is_sorted l' let extract_list = H.to_list_sorted *) (*$R let h = H.of_list [5;3;4;1;42;0] in let h, x = H.take_exn h in OUnit.assert_equal ~printer:string_of_int 0 x; let h, x = H.take_exn h in OUnit.assert_equal ~printer:string_of_int 1 x; let h, x = H.take_exn h in OUnit.assert_equal ~printer:string_of_int 3 x; let h, x = H.take_exn h in OUnit.assert_equal ~printer:string_of_int 4 x; let h, x = H.take_exn h in OUnit.assert_equal ~printer:string_of_int 5 x; let h, x = H.take_exn h in OUnit.assert_equal ~printer:string_of_int 42 x; OUnit.assert_raises H.Empty (fun () -> H.take_exn h); *) (*$QR & ~count:30 Q.(list_of_size Gen.(return 1_000) int) (fun l -> (* put elements into a heap *) let h = H.of_iter (Iter.of_list l) in OUnit.assert_equal 1_000 (H.size h); let l' = extract_list h in is_sorted l' ) *) (* test filter *) (*$QR & ~count:30 Q.(list_of_size Gen.(return 1_000) int) (fun l -> (* put elements into a heap *) let h = H.of_iter (Iter.of_list l) in let h = H.filter (fun x->x mod 2=0) h in OUnit.assert_bool "all odd" (H.to_iter h |> Iter.for_all (fun x -> x mod 2 = 0)); let l' = extract_list h in is_sorted l' ) *) (*$QR Q.(list_of_size Gen.(return 1_000) int) (fun l -> (* put elements into a heap *) let h = H.of_iter (Iter.of_list l) in let l' = H.to_iter_sorted h |> Iter.to_list in is_sorted l' ) *) module type S = sig type elt type t val empty : t (** Empty heap. *) val is_empty : t -> bool (** Is the heap empty? *) exception Empty val merge : t -> t -> t (** Merge two heaps. *) val insert : elt -> t -> t (** Insert a value in the heap. *) val add : t -> elt -> t (** Synonym to {!insert}. *) val filter : (elt -> bool) -> t -> t (** Filter values, only retaining the ones that satisfy the predicate. Linear time at least. *) val find_min : t -> elt option (** Find minimal element. *) val find_min_exn : t -> elt (** Like {!find_min} but can fail. @raise Empty if the heap is empty. *) val take : t -> (t * elt) option (** Extract and return the minimum element, and the new heap (without this element), or [None] if the heap is empty. *) val take_exn : t -> t * elt (** Like {!take}, but can fail. @raise Empty if the heap is empty. *) val delete_one : (elt -> elt -> bool) -> elt -> t -> t (** Delete one occurrence of a value if it exist in the heap. [delete_one eq x h], use [eq] to find one [x] in [h] and delete it. If [h] do not contain [x] then it return [h]. @since 2.0 *) val delete_all : (elt -> elt -> bool) -> elt -> t -> t (** Delete all occurrences of a value in the heap. [delete_all eq x h], use [eq] to find all [x] in [h] and delete them. If [h] do not contain [x] then it return [h]. The difference with {!filter} is that [delete_all] stops as soon as it enters a subtree whose root is bigger than the element. @since 2.0 *) val iter : (elt -> unit) -> t -> unit (** Iterate on elements. *) val fold : ('a -> elt -> 'a) -> 'a -> t -> 'a (** Fold on all values. *) val size : t -> int (** Number of elements (linear complexity). *) (** {2 Conversions} *) val to_list : t -> elt list (** Return the elements of the heap, in no particular order. *) val to_list_sorted : t -> elt list (** Return the elements in increasing order. @since 1.1 *) val add_list : t -> elt list -> t (** Add the elements of the list to the heap. An element occurring several times will be added that many times to the heap. @since 0.16 *) val of_list : elt list -> t (** [of_list l] is [add_list empty l]. Complexity: [O(n log n)]. *) val add_iter : t -> elt iter -> t (** Like {!add_list}. @since 2.8 *) val add_seq : t -> elt Seq.t -> t (** Like {!add_list}. @since 2.8 *) val of_iter : elt iter -> t (** Build a heap from a given [iter]. Complexity: [O(n log n)]. @since 2.8 *) val of_seq : elt Seq.t -> t (** Build a heap from a given [Seq.t]. Complexity: [O(n log n)]. @since 2.8 *) val to_iter : t -> elt iter (** Return a [iter] of the elements of the heap. @since 2.8 *) val to_seq : t -> elt Seq.t (** Return a [Seq.t] of the elements of the heap. @since 2.8 *) val to_iter_sorted : t -> elt iter (** Iterate on the elements, in increasing order. @since 2.8 *) val to_seq_sorted : t -> elt Seq.t (** Iterate on the elements, in increasing order. @since 2.8 *) val add_gen : t -> elt gen -> t (** @since 0.16 *) val of_gen : elt gen -> t (** Build a heap from a given [gen]. Complexity: [O(n log n)]. *) val to_gen : t -> elt gen (** Return a [gen] of the elements of the heap. *) val to_tree : t -> elt ktree (** Return a [ktree] of the elements of the heap. *) val to_string : ?sep:string -> (elt -> string) -> t -> string (** Print the heap in a string @since 2.7 *) val pp : ?pp_start:unit printer -> ?pp_stop:unit printer -> ?pp_sep:unit printer -> elt printer -> t printer (** Printer. Renamed from {!print} since 2.0 @since 0.16 *) end module Make(E : PARTIAL_ORD) : S with type elt = E.t = struct type elt = E.t type t = | E | N of int * elt * t * t let empty = E let is_empty = function | E -> true | N _ -> false exception Empty (* Rank of the tree *) let _rank = function | E -> 0 | N (r, _, _, _) -> r (* Make a balanced node labelled with [x], and subtrees [a] and [b]. We ensure that the right child's rank is ≤ to the rank of the left child (leftist property). The rank of the resulting node is the length of the rightmost path. *) let _make_node x a b = if _rank a >= _rank b then N (_rank b + 1, x, a, b) else N (_rank a + 1, x, b, a) let rec merge t1 t2 = match t1, t2 with | t, E -> t | E, t -> t | N (_, x, a1, b1), N (_, y, a2, b2) -> if E.leq x y then _make_node x a1 (merge b1 t2) else _make_node y a2 (merge t1 b2) let insert x h = merge (N(1,x,E,E)) h let add h x = insert x h let rec filter p h = match h with | E -> E | N(_, x, l, r) when p x -> _make_node x (filter p l) (filter p r) | N(_, _, l, r) -> merge (filter p l) (filter p r) let find_min_exn = function | E -> raise Empty | N (_, x, _, _) -> x let find_min = function | E -> None | N (_, x, _, _) -> Some x let take = function | E -> None | N (_, x, l, r) -> Some (merge l r, x) let take_exn = function | E -> raise Empty | N (_, x, l, r) -> merge l r, x let delete_one eq x h = let rec aux = function | E -> false, E | N(_, y, l, r) as h -> if eq x y then true, merge l r else ( if E.leq y x then ( let found_left, l1 = aux l in let found, r1 = if found_left then true, r else aux r in if found then true, _make_node y l1 r1 else false, h ) else false, h ) in snd (aux h) let rec delete_all eq x = function | E -> E | N (_, y, l, r) as h -> if eq x y then merge (delete_all eq x l) (delete_all eq x r) else ( if E.leq y x then _make_node y (delete_all eq x l) (delete_all eq x r) else h ) let rec iter f h = match h with | E -> () | N(_,x,l,r) -> f x; iter f l; iter f r let rec fold f acc h = match h with | E -> acc | N (_, x, a, b) -> let acc = f acc x in let acc = fold f acc a in fold f acc b let rec size = function | E -> 0 | N (_,_,l,r) -> 1 + size l + size r (** {2 Conversions} *) let to_list h = let rec aux acc h = match h with | E -> acc | N(_,x,l,r) -> x::aux (aux acc l) r in aux [] h let to_list_sorted heap = let rec recurse acc h = match take h with | None -> List.rev acc | Some (h',x) -> recurse (x::acc) h' in recurse [] heap let add_list h l = List.fold_left add h l let of_list l = add_list empty l let add_iter h i = let h = ref h in i (fun x -> h := insert x !h); !h let add_seq h seq = let h = ref h in Seq.iter (fun x -> h := insert x !h) seq; !h let of_iter i = add_iter empty i let of_seq seq = add_seq empty seq let to_iter h k = iter k h let to_seq h = (* use an explicit stack [st] *) let rec aux st () = match st with | [] -> Seq.Nil | E :: st' -> aux st' () | N(_,x,l,r) :: st' -> Seq.Cons (x, aux (l::r::st')) in aux [h] let to_iter_sorted heap = let rec recurse h k = match take h with | None -> () | Some (h',x) -> k x; recurse h' k in fun k -> recurse heap k let rec to_seq_sorted h () = match take h with | None -> Seq.Nil | Some (h', x) -> Seq.Cons (x, to_seq_sorted h') let rec add_gen h g = match g () with | None -> h | Some x -> add_gen (add h x) g let of_gen g = add_gen empty g let to_gen h = let stack = Stack.create () in Stack.push h stack; let rec next () = if Stack.is_empty stack then None else match Stack.pop stack with | E -> next() | N (_, x, a, b) -> Stack.push a stack; Stack.push b stack; Some x in next (*$Q Q.(list int) (fun l -> \ extract_list (H.of_list l) = \ extract_list (H.of_gen (CCList.to_gen l))) Q.(list int) (fun l -> \ let h = H.of_list l in \ (H.to_gen h |> CCList.of_gen |> List.sort Stdlib.compare) \ = (H.to_list h |> List.sort Stdlib.compare)) *) let rec to_tree h () = match h with | E -> `Nil | N (_, x, l, r) -> `Node(x, [to_tree l; to_tree r]) let to_string ?(sep=",") elt_to_string h = to_list_sorted h |> List.map elt_to_string |> String.concat sep (*$Q Q.(list int) (fun l -> \ let h = H.of_list l in \ (H.to_string string_of_int h) \ = (List.sort Stdlib.compare l |> List.map string_of_int |> String.concat ",")) Q.(list int) (fun l -> \ let h = H.of_list l in \ (H.to_string ~sep:" " string_of_int h) \ = (List.sort Stdlib.compare l |> List.map string_of_int |> String.concat " ")) *) let pp ?(pp_start=fun _ () -> ()) ?(pp_stop=fun _ () -> ()) ?(pp_sep=fun out () -> Format.fprintf out ",") pp_elt out h = let first=ref true in pp_start out (); iter (fun x -> if !first then first := false else pp_sep out (); pp_elt out x) h; pp_stop out (); end module Make_from_compare(E : TOTAL_ORD) = Make(struct type t = E.t let leq a b = E.compare a b <= 0 end) (*$QR Q.(list_of_size Gen.(return 1_000) int) (fun l -> let module H' = Make_from_compare(CCInt) in let h = H'.of_list l in let l' = H'.to_list_sorted h in is_sorted l' ) *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>