package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v2.8.tar.gz
md5=03b80e963186e91ddac62ef645bf7fb2
sha512=c8f434808be540c16926bf03d89f394d33fc2d092f963a7b6d412481229e0a96290f1ad7c7d522415115d35426b7aa0b3fda4b991ddc321dad279d402c9a0c0b
doc/src/containers.iter/CCKTree.ml.html
Source file CCKTree.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Lazy Tree Structure} This structure can be used to represent trees and directed graphs (as infinite trees) in a lazy fashion. Like {!CCKList}, it is a structural type. *) type 'a sequence = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a klist = unit -> [`Nil | `Cons of 'a * 'a klist] type 'a printer = Format.formatter -> 'a -> unit type +'a t = unit -> [`Nil | `Node of 'a * 'a t list] let empty () = `Nil let is_empty t = match t() with | `Nil -> true | `Node _ -> false let singleton x () = `Node (x, []) let node x l () = `Node(x,l) let node1 x t () = `Node(x,[t]) let node2 x t1 t2 () = `Node(x,[t1;t2]) let rec fold f acc t = match t() with | `Nil -> acc | `Node (x,l) -> let acc = f acc x in List.fold_left (fold f) acc l let rec iter f t = match t() with | `Nil -> () | `Node(x,l) -> f x; List.iter (iter f) l let size t = fold (fun n _ -> n+1) 0 t let height t = let rec aux t k = match t() with | `Nil -> k 0 | `Node (_, l) -> aux_l 0 l k and aux_l acc l k = match l with | [] -> k acc | t'::l' -> aux t' (fun n -> aux_l (max acc n) l' k) in aux t (fun x->x) let rec map f t () = match t() with | `Nil -> `Nil | `Node(x,l) -> `Node (f x, List.map (map f) l) let (>|=) t f = map f t let rec cut_depth n t () = match t() with | `Nil -> `Nil | `Node _ when n=0 -> `Nil | `Node(x,l) -> `Node(x, List.map (cut_depth (n-1)) l) (** {2 Graph Traversals} *) (** Abstract Set structure *) class type ['a] pset = object method add : 'a -> 'a pset method mem : 'a -> bool end let set_of_cmp (type elt) ~cmp () = let module S = Set.Make(struct type t = elt let compare = cmp end) in object val s = S.empty method add x = {< s = S.add x s >} method mem x = S.mem x s end let _nil () = `Nil let _cons x l = `Cons (x, l) let dfs ~pset t = let rec dfs pset stack () = match stack with | [] -> `Nil | `Explore t :: stack' -> begin match t() with | `Nil -> dfs pset stack' () | `Node (x, _) when pset#mem x -> dfs pset stack' () (* loop *) | `Node (x, l) -> let pset' = pset#add x in let stack' = List.rev_append (List.rev_map (fun x -> `Explore x) l) (`Exit x :: stack') in _cons (`Enter x) (dfs pset' stack') end | `Exit x :: stack' -> _cons (`Exit x) (dfs pset stack') in dfs pset [`Explore t] (** Functional queues for BFS *) module FQ = struct type 'a t = { hd : 'a list; tl : 'a list; } exception Empty (* invariant: if hd=[], then tl=[] *) let _make hd tl = match hd with | [] -> {hd=List.rev tl; tl=[] } | _::_ -> {hd; tl; } let empty = _make [] [] let list_is_empty = function | [] -> true | _::_ -> false let is_empty q = list_is_empty q.hd let push q x = _make q.hd (x::q.tl) let pop_exn q = match q.hd with | [] -> assert (list_is_empty q.tl); raise Empty | x::hd' -> let q' = _make hd' q.tl in x, q' end let bfs ~pset t = let rec bfs pset q () = if FQ.is_empty q then `Nil else let t, q' = FQ.pop_exn q in match t() with | `Nil -> bfs pset q' () | `Node(x,_) when pset#mem x -> bfs pset q' () (* loop *) | `Node(x,l) -> let q' = List.fold_left FQ.push q' l in let pset' = pset#add x in _cons x (bfs pset' q') in bfs pset (FQ.push FQ.empty t) let rec force t : ([`Nil | `Node of 'a * 'b list] as 'b) = match t() with | `Nil -> `Nil | `Node (x, l) -> `Node (x, List.map force l) let find ~pset f t = let rec _find_kl f l = match l() with | `Nil -> None | `Cons (x, l') -> match f x with | None -> _find_kl f l' | Some _ as res -> res in _find_kl f (bfs ~pset t) (** {2 Pretty-printing} *) let pp pp_x fmt t = (* at depth [lvl] *) let rec pp fmt t = match t with | `Nil -> () | `Node (x, children) -> let children = filter children in match children with | [] -> pp_x fmt x | _::_ -> Format.fprintf fmt "@[<v2>(@[<hov0>%a@]%a)@]" pp_x x pp_children children and filter l = let l = List.fold_left (fun acc c -> match c() with | `Nil -> acc | `Node _ as sub -> sub :: acc ) [] l in List.rev l and pp_children fmt children = (* remove empty children *) List.iter (fun c -> Format.fprintf fmt "@,"; pp fmt c ) children in pp fmt (t ()); () (** {2 Pretty printing in the DOT (graphviz) format} *) module Dot = struct type attribute = [ | `Color of string | `Shape of string | `Weight of int | `Style of string | `Label of string | `Id of string | `Other of string * string ] (** Dot attributes for nodes *) type graph = (string * attribute list t list) (** A dot graph is a name, plus a list of trees labelled with attributes *) let mk_id format = let buf = Buffer.create 64 in Printf.kbprintf (fun _ -> `Id (Buffer.contents buf)) buf format let mk_label format = let buf = Buffer.create 64 in Printf.kbprintf (fun _ -> `Label(Buffer.contents buf)) buf format let make ~name l = (name,l) let singleton ~name t = (name, [t]) (* find and remove the `Id attribute, if any *) let rec _find_id acc l = match l with | [] -> raise Not_found | `Id n :: l' -> n, List.rev_append acc l' | x :: l' -> _find_id (x::acc) l' let _pp_attr fmt attr = match attr with | `Color c -> Format.fprintf fmt "color=%s" c | `Shape s -> Format.fprintf fmt "shape=%s" s | `Weight w -> Format.fprintf fmt "weight=%d" w | `Style s -> Format.fprintf fmt "style=%s" s | `Label l -> Format.fprintf fmt "label=\"%s\"" l | `Other (name, value) -> Format.fprintf fmt "%s=\"%s\"" name value | `Id _ -> () (* should not be here *) let rec _pp_attrs fmt l = match l with | [] -> () | [x] -> _pp_attr fmt x | x::l' -> _pp_attr fmt x; Format.pp_print_char fmt ','; _pp_attrs fmt l' let pp out (name,l) = (* nodes already printed *) let tbl = Hashtbl.create 32 in (* fresh name generator *) let new_name = let n = ref 0 in fun () -> let s = Printf.sprintf "node_%d" !n in incr n; s in (* the name for some node is either defined, either a fresh random name *) let get_name x = try _find_id [] x with Not_found -> new_name (), x in (* recursive printing (bfs) *) let rec aux q = if FQ.is_empty q then () else let (parent,x), q' = FQ.pop_exn q in let q' = pp_node q' ?parent x in aux q' and pp_node q ?parent t = match t() with | `Nil -> q | `Node (x,l) -> let name, attrs = get_name x in begin match parent with | None -> () | Some n -> Format.fprintf out " %s -> %s;@," n name end; if not (Hashtbl.mem tbl name) then ( Hashtbl.add tbl name (); Format.fprintf out "@[%s [%a];@]@," name _pp_attrs attrs; List.fold_left (fun q y -> FQ.push q (Some name, y)) q l ) else q in let q = List.fold_left (fun q y -> FQ.push q (None, y)) FQ.empty l in (* preamble *) Format.fprintf out "@[<hv 2>digraph \"%s\" {@," name; aux q; Format.fprintf out "}@]@."; () let pp_single name out t = pp out (singleton ~name t) let print_to_file filename g = let oc = open_out filename in let fmt = Format.formatter_of_out_channel oc in try pp fmt g; Format.pp_print_flush fmt (); close_out oc with e -> close_out oc; raise e let to_file ?(name="graph") filename trees = let g = make ~name trees in print_to_file filename g end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>