package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v2.8.tar.gz
md5=03b80e963186e91ddac62ef645bf7fb2
sha512=c8f434808be540c16926bf03d89f394d33fc2d092f963a7b6d412481229e0a96290f1ad7c7d522415115d35426b7aa0b3fda4b991ddc321dad279d402c9a0c0b
doc/src/containers.data/CCWBTree.ml.html
Source file CCWBTree.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Weight-Balanced Tree} Most of this comes from "implementing sets efficiently in a functional language", Stephen Adams. The coefficients 5/2, 3/2 for balancing come from "balancing weight-balanced trees" *) (*$inject module M = Make(CCInt) type op = | Add of int * int | Remove of int | Remove_min let gen_op = CCRandom.(choose_exn [ return Remove_min ; map (fun x->Remove x) small_int ; pure (fun x y->Add (x,y)) <*> small_int <*> small_int]) and pp_op =let open Printf in function Add (x,y) -> sprintf "Add %d %d" x y | Remove x -> sprintf "Remove %d" x | Remove_min -> "Remove_min" let apply_ops l m = List.fold_left (fun m -> function | Add (i,b) -> M.add i b m | Remove i -> M.remove i m | Remove_min -> try let _, _, m' = M.extract_min m in m' with Not_found -> m ) m l let op = Q.make ~print:pp_op gen_op let _list_uniq = CCList.sort_uniq ~cmp:(CCFun.compose_binop fst Stdlib.compare) *) (*$Q & ~count:200 Q.(list op) (fun l -> let m = apply_ops l M.empty in M.balanced m) *) type 'a sequence = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a printer = Format.formatter -> 'a -> unit module type ORD = sig type t val compare : t -> t -> int end module type KEY = sig include ORD val weight : t -> int end (** {2 Signature} *) module type S = sig type key type +'a t val empty : 'a t val is_empty : _ t -> bool val singleton : key -> 'a -> 'a t val mem : key -> _ t -> bool val get : key -> 'a t -> 'a option val get_exn : key -> 'a t -> 'a (** @raise Not_found if the key is not present *) val nth : int -> 'a t -> (key * 'a) option (** [nth i m] returns the [i]-th [key, value] in the ascending order. Complexity is [O(log (cardinal m))] *) val nth_exn : int -> 'a t -> key * 'a (** @raise Not_found if the index is invalid *) val get_rank : key -> 'a t -> [`At of int | `After of int | `First] (** [get_rank k m] looks for the rank of [k] in [m], i.e. the index of [k] in the sorted list of bindings of [m]. [let (`At n) = get_rank k m in nth_exn n m = get m k] should hold. @since 1.4 *) val add : key -> 'a -> 'a t -> 'a t val remove : key -> 'a t -> 'a t val update : key -> ('a option -> 'a option) -> 'a t -> 'a t (** [update k f m] calls [f (Some v)] if [get k m = Some v], [f None] otherwise. Then, if [f] returns [Some v'] it binds [k] to [v'], if [f] returns [None] it removes [k] *) val cardinal : _ t -> int val weight : _ t -> int val fold : f:('b -> key -> 'a -> 'b) -> x:'b -> 'a t -> 'b val mapi : f:(key -> 'a -> 'b) -> 'a t -> 'b t (** Map values, giving both key and value. Will use {!WORD.of_list} to rebuild keys. @since 0.17 *) val map : f:('a -> 'b) -> 'a t -> 'b t (** Map values, giving only the value. @since 0.17 *) val iter : f:(key -> 'a -> unit) -> 'a t -> unit val split : key -> 'a t -> 'a t * 'a option * 'a t (** [split k t] returns [l, o, r] where [l] is the part of the map with keys smaller than [k], [r] has keys bigger than [k], and [o = Some v] if [k, v] belonged to the map *) val merge : f:(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t (** Like {!Map.S.merge} *) val extract_min : 'a t -> key * 'a * 'a t (** [extract_min m] returns [k, v, m'] where [k,v] is the pair with the smallest key in [m], and [m'] does not contain [k]. @raise Not_found if the map is empty *) val extract_max : 'a t -> key * 'a * 'a t (** [extract_max m] returns [k, v, m'] where [k,v] is the pair with the highest key in [m], and [m'] does not contain [k]. @raise Not_found if the map is empty *) val choose : 'a t -> (key * 'a) option val choose_exn : 'a t -> key * 'a (** @raise Not_found if the tree is empty *) val random_choose : Random.State.t -> 'a t -> key * 'a (** Randomly choose a (key,value) pair within the tree, using weights as probability weights @raise Not_found if the tree is empty *) val add_list : 'a t -> (key * 'a) list -> 'a t val of_list : (key * 'a) list -> 'a t val to_list : 'a t -> (key * 'a) list val add_seq : 'a t -> (key * 'a) sequence -> 'a t val of_seq : (key * 'a) sequence -> 'a t val to_seq : 'a t -> (key * 'a) sequence val add_gen : 'a t -> (key * 'a) gen -> 'a t val of_gen : (key * 'a) gen -> 'a t val to_gen : 'a t -> (key * 'a) gen val pp : key printer -> 'a printer -> 'a t printer (**/**) val node_ : key -> 'a -> 'a t -> 'a t -> 'a t val balanced : _ t -> bool (**/**) end module MakeFull(K : KEY) : S with type key = K.t = struct type key = K.t type weight = int type +'a t = | E | N of key * 'a * 'a t * 'a t * weight let empty = E let is_empty = function | E -> true | N _ -> false let rec get_exn k m = match m with | E -> raise Not_found | N (k', v, l, r, _) -> match K.compare k k' with | 0 -> v | n when n<0 -> get_exn k l | _ -> get_exn k r let get k m = try Some (get_exn k m) with Not_found -> None let mem k m = try ignore (get_exn k m); true with Not_found -> false let singleton k v = N (k, v, E, E, K.weight k) let weight = function | E -> 0 | N (_, _, _, _, w) -> w (* balancing parameters. We take the parameters from "Balancing weight-balanced trees", as they are rational and efficient. *) (* delta=5/2 delta × (weight l + 1) ≥ weight r + 1 *) let is_balanced l r = 5 * (weight l + 1) >= 2 * (weight r + 1) (* gamma = 3/2 weight l + 1 < gamma × (weight r + 1) *) let is_single l r = 2 * (weight l + 1) < 3 * (weight r + 1) (* debug function *) let rec balanced = function | E -> true | N (_, _, l, r, _) -> is_balanced l r && is_balanced r l && balanced l && balanced r (* smart constructor *) let mk_node_ k v l r = N (k, v, l, r, weight l + weight r + K.weight k) let single_l k1 v1 t1 t2 = match t2 with | E -> assert false | N (k2, v2, t2, t3, _) -> mk_node_ k2 v2 (mk_node_ k1 v1 t1 t2) t3 let double_l k1 v1 t1 t2 = match t2 with | N (k2, v2, N (k3, v3, t2, t3, _), t4, _) -> mk_node_ k3 v3 (mk_node_ k1 v1 t1 t2) (mk_node_ k2 v2 t3 t4) | _ -> assert false let rotate_l k v l r = match r with | E -> assert false | N (_, _, rl, rr, _) -> if is_single rl rr then single_l k v l r else double_l k v l r (* balance towards left *) let balance_l k v l r = if is_balanced l r then mk_node_ k v l r else rotate_l k v l r let single_r k1 v1 t1 t2 = match t1 with | E -> assert false | N (k2, v2, t11, t12, _) -> mk_node_ k2 v2 t11 (mk_node_ k1 v1 t12 t2) let double_r k1 v1 t1 t2 = match t1 with | N (k2, v2, t11, N (k3, v3, t121, t122, _), _) -> mk_node_ k3 v3 (mk_node_ k2 v2 t11 t121) (mk_node_ k1 v1 t122 t2) | _ -> assert false let rotate_r k v l r = match l with | E -> assert false | N (_, _, ll, lr, _) -> if is_single lr ll then single_r k v l r else double_r k v l r (* balance toward right *) let balance_r k v l r = if is_balanced r l then mk_node_ k v l r else rotate_r k v l r let rec add k v m = match m with | E -> singleton k v | N (k', v', l, r, _) -> match K.compare k k' with | 0 -> mk_node_ k v l r | n when n<0 -> balance_r k' v' (add k v l) r | _ -> balance_l k' v' l (add k v r) (*$Q Q.(list (pair small_int bool)) (fun l -> \ let m = M.of_list l in \ M.balanced m) Q.(list (pair small_int small_int)) (fun l -> \ let l = _list_uniq l in let m = M.of_list l in \ List.for_all (fun (k,v) -> M.get_exn k m = v) l) Q.(list (pair small_int small_int)) (fun l -> \ let l = _list_uniq l in let m = M.of_list l in \ M.cardinal m = List.length l) *) (* extract min binding of the tree *) let rec extract_min m = match m with | E -> raise Not_found | N (k, v, E, r, _) -> k, v, r | N (k, v, l, r, _) -> let k', v', l' = extract_min l in k', v', balance_l k v l' r (* extract max binding of the tree *) let rec extract_max m = match m with | E -> raise Not_found | N (k, v, l, E, _) -> k, v, l | N (k, v, l, r, _) -> let k', v', r' = extract_max r in k', v', balance_r k v l r' let rec remove k m = match m with | E -> E | N (k', v', l, r, _) -> match K.compare k k' with | 0 -> begin match l, r with | E, E -> E | E, o | o, E -> o | _, _ -> if weight l > weight r then (* remove max element of [l] and put it at the root, then rebalance towards the left if needed *) let k', v', l' = extract_max l in balance_l k' v' l' r else (* remove min element of [r] and rebalance *) let k', v', r' = extract_min r in balance_r k' v' l r' end | n when n<0 -> balance_l k' v' (remove k l) r | _ -> balance_r k' v' l (remove k r) (*$Q Q.(list_of_size Gen.(0 -- 30) (pair small_int small_int)) (fun l -> \ let m = M.of_list l in \ List.for_all (fun (k,_) -> \ M.mem k m && (let m' = M.remove k m in not (M.mem k m'))) l) Q.(list_of_size Gen.(0 -- 30) (pair small_int small_int)) (fun l -> \ let m = M.of_list l in \ List.for_all (fun (k,_) -> let m' = M.remove k m in M.balanced m') l) *) let update k f m = let maybe_v = get k m in match maybe_v, f maybe_v with | None, None -> m | Some _, None -> remove k m | _, Some v -> add k v m let rec nth_exn i m = match m with | E -> raise Not_found | N (k, v, l, r, w) -> let c = i - weight l in match c with | 0 -> k, v | n when n<0 -> nth_exn i l (* search left *) | _ -> (* means c< K.weight k *) if i<w-weight r then k,v else nth_exn (i+weight r-w) r let nth i m = try Some (nth_exn i m) with Not_found -> None (*$T let m = CCList.(0 -- 1000 |> map (fun i->i,i) |> M.of_list) in \ List.for_all (fun i -> M.nth_exn i m = (i,i)) CCList.(0--1000) *) let get_rank k m = let rec aux i k m = match m with | E -> if i=0 then `First else `After i | N (k', _, l, r, _) -> match K.compare k k' with | 0 -> `At (i + weight l) | n when n<0 -> aux i k l | _ -> aux (1 + weight l + i) k r in aux 0 k m (*$QR & ~count:1_000 Q.(list_of_size Gen.(0 -- 30) (pair small_int small_int)) (fun l -> let l = CCList.sort_uniq ~cmp:(CCFun.compose_binop fst compare) l in let m = M.of_list l in List.for_all (fun (k,v) -> match M.get_rank k m with | `First | `After _ -> true | `At n -> (k,v) = M.nth_exn n m) l) *) let rec fold ~f ~x:acc m = match m with | E -> acc | N (k, v, l, r, _) -> let acc = fold ~f ~x:acc l in let acc = f acc k v in fold ~f ~x:acc r let rec mapi ~f = function | E -> E | N (k, v, l, r, w) -> N (k, f k v, mapi ~f l, mapi ~f r, w) let rec map ~f = function | E -> E | N (k, v, l, r, w) -> N (k, f v, map ~f l, map ~f r, w) let rec iter ~f m = match m with | E -> () | N (k, v, l, r, _) -> iter ~f l; f k v; iter ~f r let choose_exn = function | E -> raise Not_found | N (k, v, _, _, _) -> k, v let choose = function | E -> None | N (k, v, _, _, _) -> Some (k,v) (* pick an index within [0.. weight m-1] and get the element with this index *) let random_choose st m = let w = weight m in if w=0 then raise Not_found; nth_exn (Random.State.int st w) m (* make a node (k,v,l,r) but balances on whichever side requires it *) let node_shallow_ k v l r = if is_balanced l r then if is_balanced r l then mk_node_ k v l r else balance_r k v l r else balance_l k v l r (* assume keys of [l] are smaller than [k] and [k] smaller than keys of [r], but do not assume anything about weights. returns a tree with l, r, and (k,v) *) let rec node_ k v l r = match l, r with | E, E -> singleton k v | E, o | o, E -> add k v o | N (kl, vl, ll, lr, _), N (kr, vr, rl, rr, _) -> let left = is_balanced l r in if left && is_balanced r l then mk_node_ k v l r else if not left then node_shallow_ kr vr (node_ k v l rl) rr else node_shallow_ kl vl ll (node_ k v lr r) (* join two trees, assuming all keys of [l] are smaller than keys of [r] *) let join_ l r = match l, r with | E, E -> E | E, o | o, E -> o | N _, N _ -> if weight l <= weight r then let k, v, r' = extract_min r in node_ k v l r' else let k, v, l' = extract_max l in node_ k v l' r (* if [o_v = Some v], behave like [mk_node k v l r] else behave like [join_ l r] *) let mk_node_or_join_ k o_v l r = match o_v with | None -> join_ l r | Some v -> node_ k v l r let rec split k m = match m with | E -> E, None, E | N (k', v', l, r, _) -> match K.compare k k' with | 0 -> l, Some v', r | n when n<0 -> let ll, o, lr = split k l in ll, o, node_ k' v' lr r | _ -> let rl, o, rr = split k r in node_ k' v' l rl, o, rr (*$QR & ~count:20 Q.(list_of_size Gen.(1 -- 100) (pair small_int small_int)) ( fun lst -> let lst = _list_uniq lst in let m = M.of_list lst in List.for_all (fun (k,v) -> let l, v', r = M.split k m in v' = Some v && (M.to_seq l |> Iter.for_all (fun (k',_) -> k' < k)) && (M.to_seq r |> Iter.for_all (fun (k',_) -> k' > k)) && M.balanced m && M.cardinal l + M.cardinal r + 1 = List.length lst ) lst) *) let rec merge ~f a b = match a, b with | E, E -> E | E, N (k, v, l, r, _) -> let v' = f k None (Some v) in mk_node_or_join_ k v' (merge ~f E l) (merge ~f E r) | N (k, v, l, r, _), E -> let v' = f k (Some v) None in mk_node_or_join_ k v' (merge ~f l E) (merge ~f r E) | N (k1, v1, l1, r1, w1), N (k2, v2, l2, r2, w2) -> if K.compare k1 k2 = 0 then (* easy case *) mk_node_or_join_ k1 (f k1 (Some v1) (Some v2)) (merge ~f l1 l2) (merge ~f r1 r2) else if w1 <= w2 then (* split left tree *) let l1', v1', r1' = split k2 a in mk_node_or_join_ k2 (f k2 v1' (Some v2)) (merge ~f l1' l2) (merge ~f r1' r2) else (* split right tree *) let l2', v2', r2' = split k1 b in mk_node_or_join_ k1 (f k1 (Some v1) v2') (merge ~f l1 l2') (merge ~f r1 r2') (*$R let m1 = M.of_list [1, 1; 2, 2; 4, 4] in let m2 = M.of_list [1, 1; 3, 3; 4, 4; 7, 7] in let m = M.merge (fun k -> CCOpt.map2 (+)) m1 m2 in assert_bool "balanced" (M.balanced m); assert_equal ~cmp:(CCList.equal (CCPair.equal CCInt.equal CCInt.equal)) ~printer:CCFormat.(to_string (list (pair int int))) [1, 2; 4, 8] (M.to_list m |> List.sort Stdlib.compare) *) (*$QR Q.(let p = list (pair small_int small_int) in pair p p) (fun (l1, l2) -> let l1 = _list_uniq l1 and l2 = _list_uniq l2 in let m1 = M.of_list l1 and m2 = M.of_list l2 in let m = M.merge (fun _ v1 v2 -> match v1 with | None -> v2 | Some _ as r -> r) m1 m2 in List.for_all (fun (k,v) -> M.get_exn k m = v) l1 && List.for_all (fun (k,v) -> M.mem k m1 || M.get_exn k m = v) l2) *) let cardinal m = fold ~f:(fun acc _ _ -> acc+1) ~x:0 m let add_list m l = List.fold_left (fun acc (k,v) -> add k v acc) m l let of_list l = add_list empty l let to_list m = fold ~f:(fun acc k v -> (k,v) :: acc) ~x:[] m let add_seq m seq = let m = ref m in seq (fun (k,v) -> m := add k v !m); !m let of_seq s = add_seq empty s let to_seq m yield = iter ~f:(fun k v -> yield (k,v)) m let rec add_gen m g = match g() with | None -> m | Some (k,v) -> add_gen (add k v m) g let of_gen g = add_gen empty g let to_gen m = let st = Stack.create () in Stack.push m st; let rec next() = if Stack.is_empty st then None else match Stack.pop st with | E -> next () | N (k, v, l, r, _) -> Stack.push r st; Stack.push l st; Some (k,v) in next let pp pp_k pp_v fmt m = let start = "[" and stop = "]" and arrow = "->" and sep = ","in Format.pp_print_string fmt start; let first = ref true in iter m ~f:(fun k v -> if !first then first := false else Format.pp_print_string fmt sep; pp_k fmt k; Format.pp_print_string fmt arrow; pp_v fmt v; Format.pp_print_cut fmt () ); Format.pp_print_string fmt stop end module Make(X : ORD) = MakeFull(struct include X let weight _ = 1 end)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>