package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v2.8.tar.gz
md5=03b80e963186e91ddac62ef645bf7fb2
sha512=c8f434808be540c16926bf03d89f394d33fc2d092f963a7b6d412481229e0a96290f1ad7c7d522415115d35426b7aa0b3fda4b991ddc321dad279d402c9a0c0b
doc/src/containers.data/CCTrie.ml.html
Source file CCTrie.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Prefix Tree} *) type 'a sequence = ('a -> unit) -> unit type 'a ktree = unit -> [`Nil | `Node of 'a * 'a ktree list] (** {2 Signatures} *) (** {6 A Composite Word} Words are made of characters, who belong to a total order *) module type WORD = sig type t type char_ val compare : char_ -> char_ -> int val to_seq : t -> char_ sequence val of_list : char_ list -> t end module type S = sig type char_ type key type 'a t val empty : 'a t val is_empty : _ t -> bool val add : key -> 'a -> 'a t -> 'a t (** Add a binding to the trie (possibly erasing the previous one) *) val remove : key -> 'a t -> 'a t (** Remove the key, if present *) val find : key -> 'a t -> 'a option (** Find the value associated with the key, if any *) val find_exn : key -> 'a t -> 'a (** Same as {!find} but can fail. @raise Not_found if the key is not present *) val longest_prefix : key -> 'a t -> key (** [longest_prefix k m] finds the longest prefix of [k] that leads to at least one path in [m] (it does not mean that the prefix is bound to a value. Example: if [m] has keys "abc0" and "abcd", then [longest_prefix "abc2" m] will return "abc" @since 0.17 *) val update : key -> ('a option -> 'a option) -> 'a t -> 'a t (** Update the binding for the given key. The function is given [None] if the key is absent, or [Some v] if [key] is bound to [v]; if it returns [None] the key is removed, otherwise it returns [Some y] and [key] becomes bound to [y] *) val fold : ('b -> key -> 'a -> 'b) -> 'b -> 'a t -> 'b (** Fold on key/value bindings. Will use {!WORD.of_list} to rebuild keys. *) val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t (** Map values, giving both key and value. Will use {!WORD.of_list} to rebuild keys. @since 0.17 *) val map : ('a -> 'b) -> 'a t -> 'b t (** Map values, giving only the value. @since 0.17 *) val iter : (key -> 'a -> unit) -> 'a t -> unit (** Same as {!fold}, but for effectful functions *) val fold_values : ('b -> 'a -> 'b) -> 'b -> 'a t -> 'b (** More efficient version of {!fold}, that doesn't keep keys *) val iter_values : ('a -> unit) -> 'a t -> unit val merge : ('a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t (** Merge two tries together. The function is used in case of conflicts, when a key belongs to both tries *) val size : _ t -> int (** Number of bindings *) (** {6 Conversions} *) val to_list : 'a t -> (key * 'a) list val of_list : (key * 'a) list -> 'a t val to_seq : 'a t -> (key * 'a) sequence val of_seq : (key * 'a) sequence -> 'a t val to_seq_values : 'a t -> 'a sequence val to_tree : 'a t -> [`Char of char_ | `Val of 'a | `Switch] ktree (** {6 Ranges} *) val above : key -> 'a t -> (key * 'a) sequence (** All bindings whose key is bigger or equal to the given key, in ascending order *) val below : key -> 'a t -> (key * 'a) sequence (** All bindings whose key is smaller or equal to the given key, in decreasing order *) (**/**) val check_invariants: _ t -> bool (**/**) end (*$inject module T = MakeList(CCInt) module S = String let l1 = [ [1;2], "12"; [1], "1"; [2;1], "21"; [1;2;3], "123"; [], "[]" ] let t1 = T.of_list l1 let small_l l = List.fold_left (fun acc (k,v) -> List.length k+acc) 0 l let s1 = String.of_list ["cat", 1; "catogan", 2; "foo", 3] *) (*$T String.of_list ["a", 1; "b", 2] |> String.size = 2 String.of_list ["a", 1; "b", 2; "a", 3] |> String.size = 2 String.of_list ["a", 1; "b", 2] |> String.find_exn "a" = 1 String.of_list ["a", 1; "b", 2] |> String.find_exn "b" = 2 String.of_list ["a", 1; "b", 2] |> String.find "c" = None s1 |> String.find_exn "cat" = 1 s1 |> String.find_exn "catogan" = 2 s1 |> String.find_exn "foo" = 3 s1 |> String.find "cato" = None *) module Make(W : WORD) : S with type char_ = W.char_ and type key = W.t = struct type char_ = W.char_ type key = W.t module M = Map.Make(struct type t = char_ let compare = W.compare end) type 'a t = | Empty | Cons of char_ * 'a t (* simple case *) | Node of 'a option * 'a t M.t (* invariants: - for Path(l,t) l is never empty - for Node (None,map) map always has at least 2 elements - for Node (Some _,map) map can be anything *) let empty = Empty let _invariant = function | Node (None, map) when M.is_empty map -> false | _ -> true let rec check_invariants = function | Empty -> true | Cons (_, t) -> check_invariants t | Node (None, map) when M.is_empty map -> false | Node (_, map) -> M.for_all (fun _ v -> check_invariants v) map let is_empty = function | Empty -> true | _ -> false let _id x = x (* fold [f] on [seq] with accumulator [acc], and call [finish] on the accumulator once [seq] is exhausted *) let _fold_seq_and_then f ~finish acc seq = let acc = ref acc in seq (fun x -> acc := f !acc x); finish !acc let _filter_map_seq f seq k = seq (fun x -> match f x with | None -> () | Some y -> k y) let _seq_map f seq k = seq (fun x -> k (f x)) let _seq_append_list_rev l seq = let l = ref l in seq (fun x -> l := x :: !l); !l let _seq_append_list l seq = List.rev_append (_seq_append_list_rev [] seq) l let seq_of_map map k = M.iter (fun key v -> k (key,v)) map (* return common prefix, and disjoint suffixes *) let rec _merge_lists l1 l2 = match l1, l2 with | [], _ | _, [] -> [], l1, l2 | c1::l1', c2::l2' -> if W.compare c1 c2 = 0 then let pre, rest1, rest2 = _merge_lists l1' l2' in c1::pre, rest1, rest2 else [], l1, l2 (* sub-tree t prefixed with c *) let _cons c t = Cons (c, t) (* build a Node value *) let _mk_node value map = match value with | Some _ -> Node (value, map) | None -> if M.is_empty map then Empty else if M.cardinal map = 1 then let c, sub = M.min_binding map in _cons c sub else Node (value,map) (* remove key [c] from [t] *) let _remove c t = match t with | Empty -> t | Cons (c', _) -> if W.compare c c' = 0 then Empty else t | Node (value, map) -> if M.mem c map then let map' = M.remove c map in _mk_node value map' else t let update key f t = (* first arg: current subtree and rebuild function; [c]: current char *) let goto (t, rebuild) c = match t with | Empty -> empty, fun t -> rebuild (_cons c t) | Cons (c', t') -> if W.compare c c' = 0 then t', (fun t -> rebuild (_cons c t)) else let rebuild' new_child = rebuild ( if is_empty new_child then t else let map = M.singleton c new_child in let map = M.add c' t' map in _mk_node None map ) in empty, rebuild' | Node (value, map) -> try let t' = M.find c map in (* rebuild: we modify [t], so we put the new version in [map] if it's not empty, and make the node again *) let rebuild' new_child = rebuild ( if is_empty new_child then _mk_node value (M.remove c map) else _mk_node value (M.add c new_child map) ) in t', rebuild' with Not_found -> let rebuild' new_child = if is_empty new_child then rebuild t (* ignore *) else let map' = M.add c new_child map in rebuild (_mk_node value map') in empty, rebuild' in let finish (t,rebuild) = match t with | Empty -> rebuild (_mk_node (f None) M.empty) | Cons (c, t') -> rebuild (match f None with | None -> t | Some _ as v -> _mk_node v (M.singleton c t') ) | Node (value, map) -> let value' = f value in rebuild (_mk_node value' map) in let word = W.to_seq key in _fold_seq_and_then goto ~finish (t, _id) word let add k v t = update k (fun _ -> Some v) t let remove k t = update k (fun _ -> None) t (*$T T.add [3] "3" t1 |> T.find_exn [3] = "3" T.add [3] "3" t1 |> T.find_exn [1;2] = "12" T.remove [1;2] t1 |> T.find [1;2] = None T.remove [1;2] t1 |> T.find [1] = Some "1" T.remove [1;2] t1 |> T.find [] = Some "[]" *) let find_exn k t = (* at subtree [t], and character [c] *) let goto t c = match t with | Empty -> raise Not_found | Cons (c', t') -> if W.compare c c' = 0 then t' else raise Not_found | Node (_, map) -> M.find c map and finish t = match t with | Node (Some v, _) -> v | _ -> raise Not_found in let word = W.to_seq k in _fold_seq_and_then goto ~finish t word let find k t = try Some (find_exn k t) with Not_found -> None type 'a difflist = 'a list -> 'a list let _difflist_add : 'a difflist -> 'a -> 'a difflist = fun f x -> fun l' -> f (x :: l') let longest_prefix k t = (* at subtree [t], and character [c] *) let goto (t,prefix) c = match t with | Empty -> Empty, prefix | Cons (c', t') -> if W.compare c c' = 0 then t', _difflist_add prefix c else Empty, prefix | Node (_, map) -> try let t' = M.find c map in t', _difflist_add prefix c with Not_found -> Empty, prefix and finish (_,prefix) = W.of_list (prefix []) in let word = W.to_seq k in _fold_seq_and_then goto ~finish (t,_id) word (*$= & ~printer:CCFun.id "ca" (String.longest_prefix "carte" s1) "" (String.longest_prefix "yolo" s1) "cat" (String.longest_prefix "cat" s1) "catogan" (String.longest_prefix "catogan" s1) *) (*$Q Q.(pair (list (pair (printable_string_of_size Gen.(0 -- 30)) int)) printable_string) (fun (l,s) -> \ let m = String.of_list l in \ let s' = String.longest_prefix s m in \ CCString.prefix ~pre:s' s) *) (* fold that also keeps the path from the root, so as to provide the list of chars that lead to a value. The path is a difference list, ie a function that prepends a list to some suffix *) let rec _fold f path t acc = match t with | Empty -> acc | Cons (c, t') -> _fold f (_difflist_add path c) t' acc | Node (v, map) -> let acc = match v with | None -> acc | Some v -> f acc path v in M.fold (fun c t' acc -> _fold f (_difflist_add path c) t' acc) map acc let fold f acc t = _fold (fun acc path v -> let key = W.of_list (path []) in f acc key v) _id t acc (*$T T.fold (fun acc k v -> (k,v) :: acc) [] t1 \ |> List.sort Stdlib.compare = List.sort Stdlib.compare l1 *) let mapi f t = let rec map_ prefix t = match t with | Empty -> Empty | Cons (c, t') -> Cons (c, map_ (_difflist_add prefix c) t') | Node (v, map) -> let v' = match v with | None -> None | Some v -> Some (f (W.of_list (prefix [])) v) in let map' = M.mapi (fun c t' -> let prefix' = _difflist_add prefix c in map_ prefix' t') map in Node (v', map') in map_ _id t (*$= & ~printer:Q.Print.(list (pair (list int) string)) (List.map (fun (k, v) -> (k, v ^ "!")) l1 |> List.sort Stdlib.compare) \ (T.mapi (fun k v -> v ^ "!") t1 \ |> T.to_list |> List.sort Stdlib.compare) *) let map f t = let rec map_ = function | Empty -> Empty | Cons (c, t') -> Cons (c, map_ t') | Node (v, map) -> let v' = match v with | None -> None | Some v -> Some (f v) in let map' = M.map map_ map in Node (v', map') in map_ t (*$= & ~printer:Q.Print.(list (pair (list int) string)) (List.map (fun (k, v) -> (k, v ^ "!")) l1 |> List.sort Stdlib.compare) \ (T.map (fun v -> v ^ "!") t1 \ |> T.to_list |> List.sort Stdlib.compare) *) let iter f t = _fold (fun () path y -> f (W.of_list (path [])) y) _id t () let _iter_prefix ~prefix f t = _fold (fun () path y -> let key = W.of_list (prefix (path [])) in f key y) _id t () let rec fold_values f acc t = match t with | Empty -> acc | Cons (_, t') -> fold_values f acc t' | Node (v, map) -> let acc = match v with | None -> acc | Some v -> f acc v in M.fold (fun _c t' acc -> fold_values f acc t') map acc let iter_values f t = fold_values (fun () x -> f x) () t let rec merge f t1 t2 = match t1, t2 with | Empty, _ -> t2 | _, Empty -> t1 | Cons (c1,t1'), Cons (c2,t2') -> if W.compare c1 c2 = 0 then _cons c1 (merge f t1' t2') else let map = M.add c1 t1' M.empty in let map = M.add c2 t2' map in _mk_node None map | Cons (c1, t1'), Node (value, map) -> begin try (* collision *) let t2' = M.find c1 map in let new_t = merge f t1' t2' in let map' = if is_empty new_t then M.remove c1 map else M.add c1 new_t map in _mk_node value map' with Not_found -> (* no collision *) assert (not(is_empty t1')); Node (value, M.add c1 t1' map) end | Node _, Cons _ -> merge f t2 t1 (* previous case *) | Node(v1, map1), Node (v2, map2) -> let v = match v1, v2 with | None, _ -> v2 | _, None -> v1 | Some v1, Some v2 -> f v1 v2 in let map' = M.merge (fun _c t1 t2 -> match t1, t2 with | None, None -> assert false | Some t, None | None, Some t -> Some t | Some t1, Some t2 -> let new_t = merge f t1 t2 in if is_empty new_t then None else Some new_t ) map1 map2 in _mk_node v map' (*$QR & ~count:30 Q.(let p = list_of_size Gen.(0--100) (pair printable_string small_int) in pair p p) (fun (l1,l2) -> let t1 = S.of_list l1 and t2 = S.of_list l2 in let t = S.merge (fun a _ -> Some a) t1 t2 in S.to_seq t |> Iter.for_all (fun (k,v) -> S.find k t1 = Some v || S.find k t2 = Some v) && S.to_seq t1 |> Iter.for_all (fun (k,v) -> S.find k t <> None) && S.to_seq t2 |> Iter.for_all (fun (k,v) -> S.find k t <> None)) *) let rec size t = match t with | Empty -> 0 | Cons (_, t') -> size t' | Node (v, map) -> let s = match v with None -> 0 | Some _ -> 1 in M.fold (fun _ t' acc -> size t' + acc) map s (*$T T.size t1 = List.length l1 *) let to_list t = fold (fun acc k v -> (k,v)::acc) [] t let of_list l = List.fold_left (fun acc (k,v) -> add k v acc) empty l let to_seq t k = iter (fun key v -> k (key,v)) t let to_seq_values t k = iter_values k t let of_seq seq = _fold_seq_and_then (fun acc (k,v) -> add k v acc) ~finish:_id empty seq let rec to_tree t () = let _tree_node x l () = `Node (x,l) in match t with | Empty -> `Nil | Cons (c, t') -> `Node (`Char c, [to_tree t']) | Node (v, map) -> let x = match v with | None -> `Switch | Some v -> `Val v in let l = M.bindings map in `Node(x, List.map (fun (c,t') -> _tree_node (`Char c) [to_tree t']) l) (** {6 Ranges} *) (* stack of actions for [above] and [below] *) type 'a alternative = | Yield of 'a * char_ difflist | Explore of 'a t * char_ difflist type direction = | Above | Below let rec explore ~dir k alt = match alt with | Yield (v,prefix) -> k (W.of_list (prefix[]), v) | Explore (Empty, _) -> () | Explore (Cons (c,t), prefix) -> explore ~dir k (Explore (t, _difflist_add prefix c)) | Explore (Node (o,map), prefix) -> (* if above, yield value now *) begin match o, dir with | Some v, Above -> k (W.of_list (prefix[]), v) | _ -> () end; let seq = seq_of_map map in let seq = _seq_map (fun (c,t') -> Explore (t', _difflist_add prefix c)) seq in let l' = match o, dir with | _, Above -> _seq_append_list [] seq | None, Below -> _seq_append_list_rev [] seq | Some v, Below -> _seq_append_list_rev [Yield (v, prefix)] seq in List.iter (explore ~dir k) l' let _list_eq l1 l2 = try List.for_all2 (fun x y -> W.compare x y = 0) l1 l2 with Invalid_argument _ -> false let _key_to_list key = List.rev (_seq_append_list_rev [] (W.to_seq key)) (* range above (if [above = true]) or below a threshold . [p c c'] must return [true] if [c'], in the tree, meets some criterion w.r.t [c] which is a part of the key. *) let _half_range ~dir ~p key t k = (* at subtree [cur = Some (t,trail)] or [None], alternatives above [alternatives], and char [c] in [key]. *) let on_char (cur, alternatives) c = match cur with | None -> (None, alternatives) | Some (Empty,_) -> (None, alternatives) | Some (Cons (c', t'), trail) -> if W.compare c c' = 0 then Some (t', _difflist_add trail c), alternatives else None, alternatives | Some (Node (o, map), trail) -> (* if [dir=Below], [o]'s key is below [key] and the other alternatives in [map] *) let alternatives = match o, dir with | Some v, Below -> Yield (v, trail) :: alternatives | _ -> alternatives in let alternatives = let seq = seq_of_map map in let seq = _filter_map_seq (fun (c', t') -> if p ~cur:c ~other:c' then Some (Explore (t', _difflist_add trail c')) else None) seq in (* ordering: - Above: explore alternatives in increasing order - Below: explore alternatives in decreasing order *) match dir with | Above -> _seq_append_list alternatives seq | Below -> _seq_append_list_rev alternatives seq in begin try let t' = M.find c map in Some (t', _difflist_add trail c), alternatives with Not_found -> None, alternatives end (* run through the current path (if any) and alternatives *) and finish (cur,alternatives) = begin match cur, dir with | Some (t, prefix), Above -> (* subtree prefixed by input key, therefore above key *) _iter_prefix ~prefix (fun key' v -> k (key', v)) t | Some (Node (Some v, _), prefix), Below -> (* yield the value for key *) assert (_list_eq (prefix []) (_key_to_list key)); k (key, v) | Some _, _ | None, _ -> () end; List.iter (explore ~dir k) alternatives in let word = W.to_seq key in _fold_seq_and_then on_char ~finish (Some(t,_id), []) word let above key t = _half_range ~dir:Above ~p:(fun ~cur ~other -> W.compare cur other < 0) key t let below key t = _half_range ~dir:Below ~p:(fun ~cur ~other -> W.compare cur other > 0) key t (*$= & ~printer:CCFormat.(to_string (list (pair (list int) string))) [ [1], "1"; [1;2], "12"; [1;2;3], "123"; [2;1], "21" ] \ (T.above [1] t1 |> Iter.to_list) [ [1;2], "12"; [1;2;3], "123"; [2;1], "21" ] \ (T.above [1;1] t1 |> Iter.to_list) [ [1;2], "12"; [1], "1"; [], "[]" ] \ (T.below [1;2] t1 |> Iter.to_list) [ [1], "1"; [], "[]" ] \ (T.below [1;1] t1 |> Iter.to_list) *) (* NOTE: Regression test. See #158 *) (*$T let module TPoly = Make (struct \ type t = (unit -> char) list \ type char_ = char \ let compare = compare \ let to_seq a k = List.iter (fun c -> k (c ())) a \ let of_list l = List.map (fun c -> (fun () -> c)) l \ end) \ in \ let trie = TPoly.of_list [[fun () -> 'a'], 1; [fun () -> 'b'], 2] in \ ignore (TPoly.below [fun () -> 'a'] trie |> Iter.to_list); \ true *) (*$Q & ~count:30 Q.(list_of_size Gen.(0--100) (pair printable_string small_int)) (fun l -> \ let t = S.of_list l in \ S.check_invariants t) *) (*$inject let rec sorted ~rev = function | [] | [_] -> true | x :: ((y ::_) as tl) -> (if rev then x >= y else x <= y) && sorted ~rev tl let gen_str = Q.small_printable_string *) (*$Q & ~count:200 Q.(list_of_size Gen.(1 -- 20) (pair gen_str small_int)) \ (fun l -> let t = String.of_list l in \ List.for_all (fun (k,_) -> \ String.above k t |> Iter.for_all (fun (k',v) -> k' >= k)) \ l) Q.(list_of_size Gen.(1 -- 20) (pair gen_str small_int)) \ (fun l -> let t = String.of_list l in \ List.for_all (fun (k,_) -> \ String.below k t |> Iter.for_all (fun (k',v) -> k' <= k)) \ l) Q.(list_of_size Gen.(1 -- 20) (pair gen_str small_int)) \ (fun l -> let t = String.of_list l in \ List.for_all (fun (k,_) -> \ String.above k t |> Iter.to_list |> sorted ~rev:false) \ l) Q.(list_of_size Gen.(1 -- 20) (pair gen_str small_int)) \ (fun l -> let t = String.of_list l in \ List.for_all (fun (k,_) -> \ String.below k t |> Iter.to_list |> sorted ~rev:true) \ l) *) end module type ORDERED = sig type t val compare : t -> t -> int end module MakeArray(X : ORDERED) = Make(struct type t = X.t array type char_ = X.t let compare = X.compare let to_seq a k = Array.iter k a let of_list = Array.of_list end) module MakeList(X : ORDERED) = Make(struct type t = X.t list type char_ = X.t let compare = X.compare let to_seq a k = List.iter k a let of_list l = l end) module String = Make(struct type t = string type char_ = char let compare = Char.compare let to_seq s k = String.iter k s let of_list l = let buf = Buffer.create (List.length l) in List.iter (fun c -> Buffer.add_char buf c) l; Buffer.contents buf end)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>