package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v2.8.tar.gz
md5=03b80e963186e91ddac62ef645bf7fb2
sha512=c8f434808be540c16926bf03d89f394d33fc2d092f963a7b6d412481229e0a96290f1ad7c7d522415115d35426b7aa0b3fda4b991ddc321dad279d402c9a0c0b
doc/src/containers.data/CCHashTrie.ml.html
Source file CCHashTrie.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
(* This file is free software, part of containers. See file "license" for more details. *) (*$inject module M = Make(CCInt) ;; let _listuniq = let g = Q.(list (pair small_int small_int)) in Q.map_same_type (fun l -> CCList.sort_uniq ~cmp:(fun a b -> Stdlib.compare (fst a)(fst b)) l ) g ;; *) (** {1 Hash Tries} *) type 'a sequence = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a printer = Format.formatter -> 'a -> unit type 'a ktree = unit -> [`Nil | `Node of 'a * 'a ktree list] (** {2 Transient IDs} *) module Transient = struct type t = { mutable frozen: bool } let empty = {frozen=true} (* special value *) let equal a b = Stdlib.(==) a b let create () = {frozen=false} let active st =not st.frozen let frozen st = st.frozen let freeze st = st.frozen <- true let with_ f = let r = create() in try let x = f r in freeze r; x with e -> freeze r; raise e exception Frozen end module type S = sig type key type 'a t val empty : 'a t val is_empty : _ t -> bool val singleton : key -> 'a -> 'a t val add : key -> 'a -> 'a t -> 'a t val mem : key -> _ t -> bool val get : key -> 'a t -> 'a option val get_exn : key -> 'a t -> 'a (** @raise Not_found if key not present *) val remove : key -> 'a t -> 'a t (** Remove the key, if present. *) val update : key -> f:('a option -> 'a option) -> 'a t -> 'a t (** [update k ~f m] calls [f (Some v)] if [get k m = Some v], [f None] otherwise. Then, if [f] returns [Some v'] it binds [k] to [v'], if [f] returns [None] it removes [k] *) val add_mut : id:Transient.t -> key -> 'a -> 'a t -> 'a t (** [add_mut ~id k v m] behaves like [add k v m], except it will mutate in place whenever possible. Changes done with an [id] might affect all versions of the structure obtained with the same [id] (but not other versions). @raise Transient.Frozen if [id] is frozen *) val remove_mut : id:Transient.t -> key -> 'a t -> 'a t (** Same as {!remove}, but modifies in place whenever possible @raise Transient.Frozen if [id] is frozen *) val update_mut : id:Transient.t -> key -> f:('a option -> 'a option) -> 'a t -> 'a t (** Same as {!update} but with mutability @raise Transient.Frozen if [id] is frozen *) val cardinal : _ t -> int val choose : 'a t -> (key * 'a) option val choose_exn : 'a t -> key * 'a (** @raise Not_found if not pair was found *) val iter : f:(key -> 'a -> unit) -> 'a t -> unit val fold : f:('b -> key -> 'a -> 'b) -> x:'b -> 'a t -> 'b (** {6 Conversions} *) val to_list : 'a t -> (key * 'a) list val add_list : 'a t -> (key * 'a) list -> 'a t val add_list_mut : id:Transient.t -> 'a t -> (key * 'a) list -> 'a t (** @raise Frozen if the ID is frozen *) val of_list : (key * 'a) list -> 'a t val add_seq : 'a t -> (key * 'a) sequence -> 'a t val add_seq_mut : id:Transient.t -> 'a t -> (key * 'a) sequence -> 'a t (** @raise Frozen if the ID is frozen *) val of_seq : (key * 'a) sequence -> 'a t val to_seq : 'a t -> (key * 'a) sequence val add_gen : 'a t -> (key * 'a) gen -> 'a t val add_gen_mut : id:Transient.t -> 'a t -> (key * 'a) gen -> 'a t (** @raise Frozen if the ID is frozen *) val of_gen : (key * 'a) gen -> 'a t val to_gen : 'a t -> (key * 'a) gen (** {6 IO} *) val pp : key printer -> 'a printer -> 'a t printer val as_tree : 'a t -> [`L of int * (key * 'a) list | `N ] ktree (** For debugging purpose: explore the structure of the tree, with [`L (h,l)] being a leaf (with shared hash [h]) and [`N] an inner node *) end module type KEY = sig type t val equal : t -> t -> bool val hash : t -> int end (* from https://en.wikipedia.org/wiki/Hamming_weight //This uses fewer arithmetic operations than any other known //implementation on machines with slow multiplication. //It uses 17 arithmetic operations. int popcount_2(uint64_t x) { x -= (x >> 1) & m1; //put count of each 2 bits into those 2 bits x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits x = (x + (x >> 4)) & m4; //put count of each 8 bits into those 8 bits x += x >> 8; //put count of each 16 bits into their lowest 8 bits x += x >> 16; //put count of each 32 bits into their lowest 8 bits x += x >> 32; //put count of each 64 bits into their lowest 8 bits return x & 0x7f; } m1 = 0x5555555555555555 m2 = 0x3333333333333333 m4 = 0x0f0f0f0f0f0f0f0f We use Int64 for our 64-bits popcount. *) module I64 = struct type t = Int64.t let (+) = Int64.add let (-) = Int64.sub let (lsl) = Int64.shift_left let (lsr) = Int64.shift_right_logical let (land) = Int64.logand let (lor) = Int64.logor let lnot = Int64.lognot end let popcount (b:I64.t) : int = let open I64 in let b = b - ((b lsr 1) land 0x5555555555555555L) in let b = (b land 0x3333333333333333L) + ((b lsr 2) land 0x3333333333333333L) in let b = (b + (b lsr 4)) land 0x0f0f0f0f0f0f0f0fL in let b = b + (b lsr 8) in let b = b + (b lsr 16) in let b = b + (b lsr 32) in Int64.to_int (b land 0x7fL) (*$T popcount 5L = 2 popcount 256L = 1 popcount 255L = 8 popcount 0xFFFFL = 16 popcount 0xFF1FL = 13 popcount 0xFFFFFFFFL = 32 popcount 0xFFFFFFFFFFFFFFFFL = 64 *) (*$Q Q.int (fun i -> let i = Int64.of_int i in popcount i <= 64) *) (* sparse array, using a bitfield and POPCOUNT *) module A_SPARSE = struct type 'a t = { bits: int64; arr: 'a array; id: Transient.t; } let length_log = 6 let length = 1 lsl length_log let () = assert (length = 64) let create ~id = { bits=0L; arr= [| |]; id; } let owns ~id a = Transient.active id && Transient.equal id a.id let get ~default a i = let open I64 in let idx = 1L lsl i in if a.bits land idx = 0L then ( default ) else ( let real_idx = popcount (a.bits land (idx - 1L)) in a.arr.(real_idx) ) let set ~mut a i x = let open I64 in let idx = 1L lsl i in let real_idx = popcount (a.bits land (idx - 1L)) in if (a.bits land idx = 0L) then ( (* insert at [real_idx] in a new array *) let bits = a.bits lor idx in let n = Array.length a.arr in let arr = Array.make Stdlib.(n+1) x in arr.(real_idx) <- x; if real_idx>0 then ( Array.blit a.arr 0 arr 0 real_idx; ); if real_idx<n then ( let open Stdlib in Array.blit a.arr real_idx arr (real_idx+1) (n-real_idx); ); {a with bits; arr} ) else ( (* replace element at [real_idx] *) if mut then ( a.arr.(real_idx) <- x; a ) else ( let arr = if mut then a.arr else Array.copy a.arr in arr.(real_idx) <- x; {a with arr} ) ) let update ~mut ~default a i f = let open I64 in let idx = 1L lsl i in let real_idx = popcount (a.bits land (idx - 1L)) in if a.bits land idx = 0L then ( (* not present *) let x = f default in (* insert at [real_idx] in a new array *) let bits = a.bits lor idx in let n = Array.length a.arr in let arr = Array.make Stdlib.(n+1) x in if real_idx>0 then ( Array.blit a.arr 0 arr 0 real_idx; ); if real_idx<n then ( let open Stdlib in Array.blit a.arr real_idx arr (real_idx+1) (n-real_idx); ); {a with bits; arr} ) else ( let x = f a.arr.(real_idx) in (* replace element at [real_idx] *) let arr = if mut then a.arr else Array.copy a.arr in arr.(real_idx) <- x; {a with arr} ) let remove a i = let open I64 in let idx = 1L lsl i in let real_idx = popcount (a.bits land (idx - 1L)) in if a.bits land idx = 0L then ( a (* not present *) ) else ( (* remove at [real_idx] *) let bits = a.bits land (lnot idx) in let n = Array.length a.arr in let arr = if n=1 then [||] else Array.make Stdlib.(n-1) a.arr.(0) in let open Stdlib in if real_idx > 0 then ( Array.blit a.arr 0 arr 0 real_idx; ); if real_idx+1 < n then ( Array.blit a.arr (real_idx+1) arr real_idx (n-real_idx-1); ); {a with bits; arr} ) let iter f a = Array.iter f a.arr let fold f acc a = Array.fold_left f acc a.arr end (** {2 Functors} *) module Make(Key : KEY) : S with type key = Key.t = struct module A = A_SPARSE let () = assert (A.length = 1 lsl A.length_log) module Hash : sig type t = private int val make : Key.t -> t val zero : t (* special "hash" *) val is_0 : t -> bool val equal : t -> t -> bool val rem : t -> int (* [A.length_log] last bits *) val quotient : t -> t (* remove [A.length_log] last bits *) end = struct type t = int let make = Key.hash let zero = 0 let is_0 h = h = 0 let equal : int -> int -> bool = Stdlib.(=) let rem h = h land (A.length - 1) let quotient h = h lsr A.length_log end let hash_ = Hash.make type key = Key.t (* association list, without duplicates *) type 'a leaf = | Nil | One of key * 'a | Two of key * 'a * key * 'a | Cons of key * 'a * 'a leaf type 'a t = | E | S of Hash.t * key * 'a (* single pair *) | L of Hash.t * 'a leaf (* same hash for all elements *) | N of 'a leaf * 'a t A.t (* leaf for hash=0, subnodes *) (* invariants: L [] --> E N [E, E,...., E] -> E *) let empty = E let is_empty = function | E -> true | L (_, Nil) -> assert false | S _ | L _ | N _ -> false (*$T M.is_empty M.empty *) let leaf_ k v ~h = L (h, Cons(k,v,Nil)) let singleton k v = leaf_ k v ~h:(hash_ k) (*$T not (M.is_empty (M.singleton 1 2)) M.cardinal (M.singleton 1 2) = 1 *) let rec get_exn_list_ k l = match l with | Nil -> raise Not_found | One (k', v') -> if Key.equal k k' then v' else raise Not_found | Two (k1, v1, k2, v2) -> if Key.equal k k1 then v1 else if Key.equal k k2 then v2 else raise Not_found | Cons (k', v', tail) -> if Key.equal k k' then v' else get_exn_list_ k tail let rec get_exn_ k ~h m = match m with | E -> raise Not_found | S (_, k', v') -> if Key.equal k k' then v' else raise Not_found | L (_, l) -> get_exn_list_ k l | N (leaf, a) -> if Hash.is_0 h then get_exn_list_ k leaf else ( let i = Hash.rem h in let h' = Hash.quotient h in get_exn_ k ~h:h' (A.get ~default:E a i) ) let get_exn k m = get_exn_ k ~h:(hash_ k) m (*$Q _listuniq (fun l -> \ let m = M.of_list l in \ List.for_all (fun (x,y) -> M.get_exn x m = y) l) *) let get k m = try Some (get_exn_ k ~h:(hash_ k) m) with Not_found -> None let mem k m = try ignore (get_exn_ k ~h:(hash_ k) m); true with Not_found -> false (* TODO: use Hash.combine if array only has one non-empty LEAF element? *) (* add [k,v] to the list [l], removing old binding if any *) let rec add_list_ k v l = match l with | Nil -> One (k,v) | One (k1, v1) -> if Key.equal k k1 then One (k, v) else Two (k,v,k1,v1) | Two (k1, v1, k2, v2) -> if Key.equal k k1 then Two (k, v, k2, v2) else if Key.equal k k2 then Two (k, v, k1, v1) else Cons (k, v, l) | Cons (k', v', tail) -> if Key.equal k k' then Cons (k, v, tail) (* replace *) else Cons (k', v', add_list_ k v tail) let node_ leaf a = N (leaf, a) (* [h]: hash, with the part required to reach this leaf removed [id] is the transient ID used for mutability *) let rec add_ ~id k v ~h m = match m with | E -> S (h, k, v) | S (h', k', v') -> if Hash.equal h h' then ( if Key.equal k k' then S (h, k, v) (* replace *) else L (h, Cons (k, v, Cons (k', v', Nil))) ) else ( make_array_ ~id ~leaf:(Cons (k', v', Nil)) ~h_leaf:h' k v ~h ) | L (h', l) -> if Hash.equal h h' then L (h, add_list_ k v l) else (* split into N *) make_array_ ~id ~leaf:l ~h_leaf:h' k v ~h | N (leaf, a) -> if Hash.is_0 h then node_ (add_list_ k v leaf) a else ( let mut = A.owns ~id a in (* can we modify [a] in place? *) node_ leaf (add_to_array_ ~id ~mut k v ~h a) ) (* make an array containing a leaf, and insert (k,v) in it *) and make_array_ ~id ~leaf ~h_leaf:h' k v ~h = let a = A.create ~id in let a, leaf = if Hash.is_0 h' then a, leaf else ( (* put leaf in the right bucket *) let i = Hash.rem h' in let h'' = Hash.quotient h' in A.set ~mut:true a i (L (h'', leaf)), Nil ) in (* then add new node *) let a, leaf = if Hash.is_0 h then a, add_list_ k v leaf else add_to_array_ ~id ~mut:true k v ~h a, leaf in N (leaf, a) (* add k->v to [a] *) and add_to_array_ ~id ~mut k v ~h a = (* insert in a bucket *) let i = Hash.rem h in let h' = Hash.quotient h in A.update ~default:E ~mut a i (fun x -> add_ ~id k v ~h:h' x) let add k v m = add_ ~id:Transient.empty k v ~h:(hash_ k) m (*$Q _listuniq (fun l -> \ let m = List.fold_left (fun m (x,y) -> M.add x y m) M.empty l in \ List.for_all (fun (x,y) -> M.get_exn x m = y) l) *) let add_mut ~id k v m = if Transient.frozen id then raise Transient.Frozen; add_ ~id k v ~h:(hash_ k) m (*$R let lsort = List.sort Stdlib.compare in let m = M.of_list [1, 1; 2, 2] in let id = Transient.create() in let m' = M.add_mut ~id 3 3 m in let m' = M.add_mut ~id 4 4 m' in assert_equal [1, 1; 2, 2] (M.to_list m |> lsort); assert_equal [1, 1; 2, 2; 3,3; 4,4] (M.to_list m' |> lsort); Transient.freeze id; assert_bool "must raise" (try ignore(M.add_mut ~id 5 5 m'); false with Transient.Frozen -> true) *) exception LocalExit let is_empty_arr_ a = try A.iter (fun t -> if not (is_empty t) then raise LocalExit) a; true with LocalExit -> false let is_empty_list_ = function | Nil -> true | One _ | Two _ | Cons _ -> false let rec remove_list_ k l = match l with | Nil -> Nil | One (k', _) -> if Key.equal k k' then Nil else l | Two (k1, v1, k2, v2) -> if Key.equal k k1 then One (k2, v2) else if Key.equal k k2 then One (k1, v1) else l | Cons (k', v', tail) -> if Key.equal k k' then tail else Cons (k', v', remove_list_ k tail) let rec remove_rec_ ~id k ~h m = match m with | E -> E | S (_, k', _) -> if Key.equal k k' then E else m | L (h, l) -> let l = remove_list_ k l in if is_empty_list_ l then E else L (h, l) | N (leaf, a) -> let leaf, a = if Hash.is_0 h then remove_list_ k leaf, a else ( let i = Hash.rem h in let h' = Hash.quotient h in let new_t = remove_rec_ ~id k ~h:h' (A.get ~default:E a i) in if is_empty new_t then leaf, A.remove a i (* remove sub-tree *) else ( let mut = A.owns ~id a in leaf, A.set ~mut a i new_t ) ) in if is_empty_list_ leaf && is_empty_arr_ a then E else N (leaf, a) let remove k m = remove_rec_ ~id:Transient.empty k ~h:(hash_ k) m let remove_mut ~id k m = if Transient.frozen id then raise Transient.Frozen; remove_rec_ ~id k ~h:(hash_ k) m (*$QR _listuniq (fun l -> let m = M.of_list l in List.for_all (fun (x,_) -> let m' = M.remove x m in not (M.mem x m') && M.cardinal m' = M.cardinal m - 1 && List.for_all (fun (y,v) -> y = x || M.get_exn y m' = v) l ) l ) *) let update_ ~id k f m = let h = hash_ k in let opt_v = try Some (get_exn_ k ~h m) with Not_found -> None in begin match opt_v, f opt_v with | None, None -> m | Some _, Some v | None, Some v -> add_ ~id k v ~h m | Some _, None -> remove_rec_ ~id k ~h m end let update k ~f m = update_ ~id:Transient.empty k f m let update_mut ~id k ~f m = if Transient.frozen id then raise Transient.Frozen; update_ ~id k f m (*$R let m = M.of_list [1, 1; 2, 2; 5, 5] in let m' = M.update 4 (function | None -> Some 4 | Some _ -> Some 0 ) m in assert_equal [1,1; 2,2; 4,4; 5,5] (M.to_list m' |> List.sort Stdlib.compare); *) let iter ~f t = let rec aux = function | E -> () | S (_, k, v) -> f k v | L (_,l) -> aux_list l | N (l,a) -> aux_list l; A.iter aux a and aux_list = function | Nil -> () | One (k,v) -> f k v | Two (k1,v1,k2,v2) -> f k1 v1; f k2 v2 | Cons (k, v, tl) -> f k v; aux_list tl in aux t let fold ~f ~x:acc t = let rec aux acc t = match t with | E -> acc | S (_,k,v) -> f acc k v | L (_,l) -> aux_list acc l | N (l,a) -> let acc = aux_list acc l in A.fold aux acc a and aux_list acc l = match l with | Nil -> acc | One (k,v) -> f acc k v | Two (k1,v1,k2,v2) -> f (f acc k1 v1) k2 v2 | Cons (k, v, tl) -> let acc = f acc k v in aux_list acc tl in aux acc t (*$T let l = CCList.(1 -- 10 |> map (fun x->x,x)) in \ M.of_list l \ |> M.fold ~f:(fun acc x y -> (x,y)::acc) ~x:[] \ |> List.sort Stdlib.compare = l *) let cardinal m = fold ~f:(fun n _ _ -> n+1) ~x:0 m let to_list m = fold ~f:(fun acc k v -> (k,v)::acc) ~x:[] m let add_list_mut ~id m l = List.fold_left (fun acc (k,v) -> add_mut ~id k v acc) m l let add_list m l = Transient.with_ (fun id -> add_list_mut ~id m l) let of_list l = add_list empty l let add_seq_mut ~id m seq = let m = ref m in seq (fun (k,v) -> m := add_mut ~id k v !m); !m let add_seq m seq = Transient.with_ (fun id -> add_seq_mut ~id m seq) let of_seq s = add_seq empty s let to_seq m yield = iter ~f:(fun k v -> yield (k,v)) m (*$Q _listuniq (fun l -> \ (List.sort Stdlib.compare l) = \ (l |> Iter.of_list |> M.of_seq |> M.to_seq |> Iter.to_list \ |> List.sort Stdlib.compare) ) *) let rec add_gen_mut ~id m g = match g() with | None -> m | Some (k,v) -> add_gen_mut ~id (add_mut ~id k v m) g let add_gen m g = Transient.with_ (fun id -> add_gen_mut ~id m g) let of_gen g = add_gen empty g (* traverse the tree by increasing hash order, where the order compares hashes lexicographically by A.length_log-wide chunks of bits, least-significant chunks first *) let to_gen m = let st = Stack.create() in Stack.push m st; let rec next() = if Stack.is_empty st then None else match Stack.pop st with | E -> next () | S (_,k,v) -> Some (k,v) | L (_, Nil) -> next() | L (_, One (k,v)) -> Some (k,v) | L (h, Two (k1,v1,k2,v2)) -> Stack.push (L (h, One (k2,v2))) st; Some (k1,v1) | L (h, Cons(k,v,tl)) -> Stack.push (L (h, tl)) st; (* tail *) Some (k,v) | N (l, a) -> A.iter (fun sub -> Stack.push sub st) a; Stack.push (L (Hash.zero, l)) st; (* leaf *) next() in next (*$Q _listuniq (fun l -> \ (List.sort Stdlib.compare l) = \ (l |> Gen.of_list |> M.of_gen |> M.to_gen |> Gen.to_list \ |> List.sort Stdlib.compare) ) *) let choose m = to_gen m () (*$T M.choose M.empty = None M.choose M.(of_list [1,1; 2,2]) <> None *) let choose_exn m = match choose m with | None -> raise Not_found | Some (k,v) -> k, v let pp ppk ppv out m = let first = ref true in iter m ~f:(fun k v -> if !first then first := false else Format.fprintf out ";@ "; ppk out k; Format.pp_print_string out " -> "; ppv out v ) let rec as_tree m () = match m with | E -> `Nil | S (h,k,v) -> `Node (`L ((h:>int), [k,v]), []) | L (h,l) -> `Node (`L ((h:>int), list_as_tree_ l), []) | N (l,a) -> `Node (`N, as_tree (L (Hash.zero, l)) :: array_as_tree_ a) and list_as_tree_ l = match l with | Nil -> [] | One (k,v) -> [k,v] | Two (k1,v1,k2,v2) -> [k1,v1; k2,v2] | Cons (k, v, tail) -> (k,v) :: list_as_tree_ tail and array_as_tree_ a = A.fold (fun acc t -> as_tree t :: acc) [] a end (*$R let m = M.of_list CCList.( (501 -- 1000) @ (500 -- 1) |> map (fun i->i,i)) in assert_equal ~printer:CCInt.to_string 1000 (M.cardinal m); assert_bool "check all get" (Iter.for_all (fun i -> i = M.get_exn i m) Iter.(1 -- 1000)); let m = Iter.(501 -- 1000 |> fold (fun m i -> M.remove i m) m) in assert_equal ~printer:CCInt.to_string 500 (M.cardinal m); assert_bool "check all get after remove" (Iter.for_all (fun i -> i = M.get_exn i m) Iter.(1 -- 500)); assert_bool "check all get after remove" (Iter.for_all (fun i -> None = M.get i m) Iter.(501 -- 1000)); *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>