package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v2.8.tar.gz
md5=03b80e963186e91ddac62ef645bf7fb2
sha512=c8f434808be540c16926bf03d89f394d33fc2d092f963a7b6d412481229e0a96290f1ad7c7d522415115d35426b7aa0b3fda4b991ddc321dad279d402c9a0c0b
doc/src/containers.data/CCGraph.ml.html
Source file CCGraph.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Simple Graph Interface} *) (** {2 Iter Helpers} *) type 'a iter = ('a -> unit) -> unit (** A sequence of items of type ['a], possibly infinite @since 2.8 *) type 'a iter_once = 'a iter (** Iter that should be used only once @since 2.8 *) type 'a sequence = ('a -> unit) -> unit (** A sequence of items of type ['a], possibly infinite @deprecate see {!iter} instead *) [@@ocaml.deprecated "see iter"] type 'a sequence_once = 'a iter (** Iter that should be used only once @deprecate see {!iter_once} instead *) [@@ocaml.deprecated "see iter_once"] exception Iter_once let (|>) x f = f x module Iter = struct type 'a t = 'a iter let return x k = k x let (>>=) a f k = a (fun x -> f x k) let map f a k = a (fun x -> k (f x)) let filter_map f a k = a (fun x -> match f x with None -> () | Some y -> k y) let iter f a = a f let fold f acc a = let acc = ref acc in a (fun x -> acc := f !acc x); !acc let to_list seq = fold (fun acc x->x::acc) [] seq |> List.rev exception Exit_ let exists_ f seq = try seq (fun x -> if f x then raise Exit_); false with Exit_ -> true end module Seq = Iter (** {2 Interfaces for graphs} *) (** Directed graph with vertices of type ['v] and edges labeled with [e'] *) type ('v, 'e) t = ('v -> ('e * 'v) iter) type ('v, 'e) graph = ('v, 'e) t let make (f:'v->('e*'v) iter): ('v, 'e) t = f (** Mutable bitset for values of type ['v] *) type 'v tag_set = { get_tag: 'v -> bool; set_tag: 'v -> unit; (** Set tag for the given element *) } (** Mutable table with keys ['k] and values ['a] *) type ('k, 'a) table = { mem: 'k -> bool; find: 'k -> 'a; (** @raise Not_found *) add: 'k -> 'a -> unit; (** Erases previous binding *) } (** Mutable set *) type 'a set = ('a, unit) table let mk_table (type k) ~eq ?(hash=Hashtbl.hash) size = let module H = Hashtbl.Make(struct type t = k let equal = eq let hash = hash end) in let tbl = H.create size in { mem=(fun k -> H.mem tbl k) ; find=(fun k -> H.find tbl k) ; add=(fun k v -> H.replace tbl k v) } let mk_map (type k) ~cmp () = let module M = Map.Make(struct type t = k let compare = cmp end) in let tbl = ref M.empty in { mem=(fun k -> M.mem k !tbl) ; find=(fun k -> M.find k !tbl) ; add=(fun k v -> tbl := M.add k v !tbl) } (** {2 Bags} *) type 'a bag = { push: 'a -> unit; is_empty: unit -> bool; pop: unit -> 'a; (** raises some exception is empty *) } let mk_queue () = let q = Queue.create() in { push=(fun x -> Queue.push x q) ; is_empty=(fun () -> Queue.is_empty q) ; pop=(fun () -> Queue.pop q); } let mk_stack() = let s = Stack.create() in { push=(fun x -> Stack.push x s) ; is_empty=(fun () -> Stack.is_empty s) ; pop=(fun () -> Stack.pop s); } (** Implementation from http://en.wikipedia.org/wiki/Skew_heap *) module Heap = struct type 'a t = | E | N of 'a * 'a t * 'a t let is_empty = function | E -> true | N _ -> false let rec union ~leq t1 t2 = match t1, t2 with | E, _ -> t2 | _, E -> t1 | N (x1, l1, r1), N (x2, l2, r2) -> if leq x1 x2 then N (x1, union ~leq t2 r1, l1) else N (x2, union ~leq t1 r2, l2) let insert ~leq h x = union ~leq (N (x, E, E)) h let pop ~leq h = match h with | E -> raise Not_found | N (x, l, r) -> x, union ~leq l r end let mk_heap ~leq = let t = ref Heap.E in { push=(fun x -> t := Heap.insert ~leq !t x) ; is_empty=(fun () -> Heap.is_empty !t) ; pop=(fun () -> let x, h = Heap.pop ~leq !t in t := h; x ) } (** {2 Traversals} *) module Traverse = struct type ('v, 'e) path = ('v * 'e * 'v) list let generic_tag ~ ~bag ~graph iter = let first = ref true in fun k -> (* ensure linearity *) if !first then first := false else raise Iter_once; Iter.iter bag.push iter; while not (bag.is_empty ()) do let x = bag.pop () in if not (tags.get_tag x) then ( k x; tags.set_tag x; Iter.iter (fun (_,dest) -> bag.push dest) (graph x) ) done let generic ~tbl ~bag ~graph iter = let = { get_tag=tbl.mem; set_tag=(fun v -> tbl.add v ()); } in generic_tag ~tags ~bag ~graph iter let bfs ~tbl ~graph iter = generic ~tbl ~bag:(mk_queue ()) ~graph iter let bfs_tag ~ ~graph iter = generic_tag ~tags ~bag:(mk_queue()) ~graph iter let dijkstra_tag ?(dist=fun _ -> 1) ~ ~graph iter = let = { get_tag=(fun (v,_,_) -> tags.get_tag v); set_tag=(fun (v,_,_) -> tags.set_tag v); } and iter' = Iter.map (fun v -> v, 0, []) iter and graph' (v,d,p) = graph v |> Iter.map (fun (e,v') -> e, (v',d+dist e, (v,e,v')::p)) in let bag = mk_heap ~leq:(fun (_,d1,_) (_,d2,_) -> d1 <= d2) in generic_tag ~tags:tags' ~bag ~graph:graph' iter' let dijkstra ~tbl ?dist ~graph iter = let = { get_tag=tbl.mem; set_tag=(fun v -> tbl.add v ()); } in dijkstra_tag ~tags ?dist ~graph iter let dfs ~tbl ~graph iter = generic ~tbl ~bag:(mk_stack ()) ~graph iter let dfs_tag ~ ~graph iter = generic_tag ~tags ~bag:(mk_stack()) ~graph iter module Event = struct type edge_kind = [`Forward | `Back | `Cross ] (** A traversal is a iteruence of such events *) type ('v,'e) t = [ `Enter of 'v * int * ('v,'e) path (* unique index in traversal, path from start *) | `Exit of 'v | `Edge of 'v * 'e * 'v * edge_kind ] let get_vertex = function | `Enter (v, _, _) -> Some (v, `Enter) | `Exit v -> Some (v, `Exit) | `Edge _ -> None let get_enter = function | `Enter (v, _, _) -> Some v | `Exit _ | `Edge _ -> None let get_exit = function | `Exit v -> Some v | `Enter _ | `Edge _ -> None let get_edge = function | `Edge (v1,e,v2,_) -> Some (v1,e,v2) | `Enter _ | `Exit _ -> None let get_edge_kind = function | `Edge (v,e,v',k) -> Some (v,e,v',k) | `Enter _ | `Exit _ -> None (* is [v] the origin of some edge in [path]? *) let rec list_mem_ ~eq ~graph v path = match path with | [] -> false | (v1,_,_) :: path' -> eq v v1 || list_mem_ ~eq ~graph v path' let dfs_tag ~eq ~ ~graph iter = let first = ref true in fun k -> if !first then first := false else raise Iter_once; let bag = mk_stack() in let n = ref 0 in Iter.iter (fun v -> (* start DFS from this vertex *) bag.push (`Enter (v, [])); while not (bag.is_empty ()) do match bag.pop () with | `Enter (v, path) -> if not (tags.get_tag v) then ( let num = !n in incr n; tags.set_tag v; k (`Enter (v, num, path)); bag.push (`Exit v); Iter.iter (fun (e,v') -> bag.push (`Edge (v,e,v',(v,e,v') :: path))) (graph v); ) | `Exit x -> k (`Exit x) | `Edge (v,e,v', path) -> let edge_kind = if tags.get_tag v' then if list_mem_ ~eq ~graph v' path then `Back else `Cross else ( bag.push (`Enter (v', path)); `Forward ) in k (`Edge (v,e,v', edge_kind)) done ) iter let dfs ~tbl ~eq ~graph iter = let = { set_tag=(fun v -> tbl.add v ()); get_tag=tbl.mem; } in dfs_tag ~eq ~tags ~graph iter end (*$R let l = let tbl = mk_table ~eq:CCInt.equal 128 in Traverse.Event.dfs ~tbl ~eq:CCInt.equal ~graph:divisors_graph (Iter.return 345614) |> Iter.to_list in let expected = [`Enter (345614, 0, []); `Edge (345614, (), 172807, `Forward); `Enter (172807, 1, [(345614, (), 172807)]); `Edge (172807, (), 1, `Forward); `Enter (1, 2, [(172807, (), 1); (345614, (), 172807)]); `Exit 1; `Exit 172807; `Edge (345614, (), 2, `Forward); `Enter (2, 3, [(345614, (), 2)]); `Edge (2, (), 1, `Cross); `Exit 2; `Edge (345614, (), 1, `Cross); `Exit 345614] in assert_equal expected l *) end (** {2 Cycles} *) let is_dag ~tbl ~eq ~graph vs = Traverse.Event.dfs ~tbl ~eq ~graph vs |> Iter.exists_ (function | `Edge (_, _, _, `Back) -> true | _ -> false) (** {2 Topological Sort} *) exception Has_cycle let topo_sort_tag ~eq ?(rev=false) ~ ~graph iter = (* use DFS *) let l = Traverse.Event.dfs_tag ~eq ~tags ~graph iter |> Iter.filter_map (function | `Exit v -> Some v | `Edge (_, _, _, `Back) -> raise Has_cycle | `Enter _ | `Edge _ -> None ) |> Iter.fold (fun acc x -> x::acc) [] in if rev then List.rev l else l let topo_sort ~eq ?rev ~tbl ~graph iter = let = { get_tag=tbl.mem; set_tag=(fun v -> tbl.add v ()); } in topo_sort_tag ~eq ?rev ~tags ~graph iter (*$T let tbl = mk_table ~eq:CCInt.equal 128 in \ let l = topo_sort ~eq:CCInt.equal ~tbl ~graph:divisors_graph (Iter.return 42) in \ List.for_all (fun (i,j) -> \ let idx_i = CCList.find_idx ((=)i) l |> CCOpt.get_exn |> fst in \ let idx_j = CCList.find_idx ((=)j) l |> CCOpt.get_exn |> fst in \ idx_i < idx_j) \ [ 42, 21; 14, 2; 3, 1; 21, 7; 42, 3] let tbl = mk_table ~eq:CCInt.equal 128 in \ let l = topo_sort ~eq:CCInt.equal ~rev:true ~tbl ~graph:divisors_graph (Iter.return 42) in \ List.for_all (fun (i,j) -> \ let idx_i = CCList.find_idx ((=)i) l |> CCOpt.get_exn |> fst in \ let idx_j = CCList.find_idx ((=)j) l |> CCOpt.get_exn |> fst in \ idx_i > idx_j) \ [ 42, 21; 14, 2; 3, 1; 21, 7; 42, 3] *) (** {2 Lazy Spanning Tree} *) module Lazy_tree = struct type ('v, 'e) t = { vertex: 'v; children: ('e * ('v, 'e) t) list Lazy.t; } let make_ vertex children = {vertex; children} let rec map_v f {vertex=v; children=l} = let l' = lazy (List.map (fun (e, child) -> e, map_v f child) (Lazy.force l)) in make_ (f v) l' let rec fold_v f acc {vertex=v; children=l} = let acc = f acc v in List.fold_left (fun acc (_, t') -> fold_v f acc t') acc (Lazy.force l) end let spanning_tree_tag ~ ~graph v = let rec mk_node v = let children = lazy ( Iter.fold (fun acc (e,v') -> if tags.get_tag v' then acc else ( tags.set_tag v'; (e, mk_node v') :: acc ) ) [] (graph v) ) in Lazy_tree.make_ v children in mk_node v let spanning_tree ~tbl ~graph v = let = { get_tag=tbl.mem; set_tag=(fun v -> tbl.add v ()); } in spanning_tree_tag ~tags ~graph v (** {2 Strongly Connected Components} *) module SCC = struct type 'v state = { mutable min_id: int; (* min ID of the vertex' scc *) id: int; (* ID of the vertex *) mutable on_stack: bool; mutable vertex: 'v; } let mk_cell v n = { min_id=n; id=n; on_stack=false; vertex=v; } (* pop elements of [stack] until we reach node with given [id] *) let rec pop_down_to ~id acc stack = assert (not(Stack.is_empty stack)); let cell = Stack.pop stack in cell.on_stack <- false; if cell.id = id then ( assert (cell.id = cell.min_id); cell.vertex :: acc (* return SCC *) ) else pop_down_to ~id (cell.vertex::acc) stack let explore ~tbl ~graph iter = let first = ref true in fun k -> if !first then first := false else raise Iter_once; (* stack of nodes being explored, for the DFS *) let to_explore = Stack.create() in (* stack for Tarjan's algorithm itself *) let stack = Stack.create () in (* unique ID *) let n = ref 0 in (* exploration *) Iter.iter (fun v -> Stack.push (`Enter v) to_explore; while not (Stack.is_empty to_explore) do match Stack.pop to_explore with | `Enter v -> if not (tbl.mem v) then ( (* remember unique ID for [v] *) let id = !n in incr n; let cell = mk_cell v id in cell.on_stack <- true; tbl.add v cell; Stack.push cell stack; Stack.push (`Exit (v, cell)) to_explore; (* explore children *) Iter.iter (fun (_,v') -> Stack.push (`Enter v') to_explore) (graph v) ) | `Exit (v, cell) -> (* update [min_id] *) assert cell.on_stack; Iter.iter (fun (_,dest) -> (* must not fail, [dest] already explored *) let dest_cell = tbl.find dest in (* same SCC? yes if [dest] points to [cell.v] *) if dest_cell.on_stack then cell.min_id <- min cell.min_id dest_cell.min_id ) (graph v); (* pop from stack if SCC found *) if cell.id = cell.min_id then ( let scc = pop_down_to ~id:cell.id [] stack in k scc ) done ) iter; assert (Stack.is_empty stack); () end type 'v scc_state = 'v SCC.state let scc ~tbl ~graph iter = SCC.explore ~tbl ~graph iter (* example from https://en.wikipedia.org/wiki/Strongly_connected_component *) (*$R let set_eq ?(eq=(=)) l1 l2 = CCList.subset ~eq l1 l2 && CCList.subset ~eq l2 l1 in let graph = of_list ~eq:CCString.equal [ "a", "b" ; "b", "e" ; "e", "a" ; "b", "f" ; "e", "f" ; "f", "g" ; "g", "f" ; "b", "c" ; "c", "g" ; "c", "d" ; "d", "c" ; "d", "h" ; "h", "d" ; "h", "g" ] in let tbl = mk_table ~eq:CCString.equal 128 in let res = scc ~tbl ~graph (Iter.return "a") |> Iter.to_list in assert_bool "scc" (set_eq ~eq:(set_eq ?eq:None) res [ [ "a"; "b"; "e" ] ; [ "f"; "g" ] ; [ "c"; "d"; "h" ] ] ) *) (** {2 Pretty printing in the DOT (graphviz) format} *) module Dot = struct type attribute = [ | `Color of string | `Shape of string | `Weight of int | `Style of string | `Label of string | `Other of string * string ] (** Dot attribute *) let pp_list pp_x out l = Format.pp_print_string out "["; List.iteri (fun i x -> if i > 0 then Format.fprintf out ",@;"; pp_x out x) l; Format.pp_print_string out "]" type vertex_state = { mutable explored : bool; id : int; } (** Print an enum of Full.traverse_event *) let pp_all ~tbl ~eq ?(attrs_v=fun _ -> []) ?(attrs_e=fun _ -> []) ?(name="graph") ~graph out iter = (* print an attribute *) let pp_attr out attr = match attr with | `Color c -> Format.fprintf out "color=%s" c | `Shape s -> Format.fprintf out "shape=%s" s | `Weight w -> Format.fprintf out "weight=%d" w | `Style s -> Format.fprintf out "style=%s" s | `Label l -> Format.fprintf out "label=\"%s\"" l | `Other (name, value) -> Format.fprintf out "%s=\"%s\"" name value (* map from vertices to integers *) and get_node = let count = ref 0 in fun v -> try tbl.find v with Not_found -> let node = {id= !count; explored=false} in incr count; tbl.add v node; node and vertex_explored v = try (tbl.find v).explored with Not_found -> false in let set_explored v = (get_node v).explored <- true and get_id v = (get_node v).id in (* the unique name of a vertex *) let pp_vertex out v = Format.fprintf out "vertex_%d" (get_id v) in (* print preamble *) Format.fprintf out "@[<v2>digraph \"%s\" {@;" name; (* traverse *) let = { get_tag=vertex_explored; set_tag=set_explored; (* allocate new ID *) } in let events = Traverse.Event.dfs_tag ~eq ~tags ~graph iter in Iter.iter (function | `Enter (v, _n, _path) -> let attrs = attrs_v v in Format.fprintf out "@[<h>%a %a;@]@," pp_vertex v (pp_list pp_attr) attrs | `Exit _ -> () | `Edge (v1,e,v2,_) -> let attrs = attrs_e e in Format.fprintf out "@[<h>%a -> %a %a;@]@," pp_vertex v1 pp_vertex v2 (pp_list pp_attr) attrs ) events; (* close *) Format.fprintf out "}@]@;@?"; () let pp_seq = pp_all let pp ~tbl ~eq ?attrs_v ?attrs_e ?name ~graph fmt v = pp_all ~tbl ~eq ?attrs_v ?attrs_e ?name ~graph fmt (Iter.return v) let with_out filename f = let oc = open_out filename in try let fmt = Format.formatter_of_out_channel oc in let x = f fmt in Format.pp_print_flush fmt (); close_out oc; x with e -> close_out oc; raise e end (** {2 Mutable Graph} *) type ('v, 'e) mut_graph = { graph: ('v, 'e) t; add_edge: 'v -> 'e -> 'v -> unit; remove : 'v -> unit; } let mk_mut_tbl (type k) ~eq ?(hash=Hashtbl.hash) size = let module Tbl = Hashtbl.Make(struct type t = k let hash = hash let equal = eq end) in let tbl = Tbl.create size in { graph=(fun v yield -> try List.iter yield (Tbl.find tbl v) with Not_found -> () ); add_edge=(fun v1 e v2 -> let l = try Tbl.find tbl v1 with Not_found -> [] in Tbl.replace tbl v1 ((e,v2)::l) ); remove = (fun v -> Tbl.remove tbl v); } (** {2 Immutable Graph} *) module type MAP = sig type vertex type 'a t val as_graph : 'a t -> (vertex, 'a) graph (** Graph view of the map. *) val empty : 'a t val add_edge : vertex -> 'a -> vertex -> 'a t -> 'a t val remove_edge : vertex -> vertex -> 'a t -> 'a t val add : vertex -> 'a t -> 'a t (** Add a vertex, possibly with no outgoing edge. *) val remove : vertex -> 'a t -> 'a t (** Remove the vertex and all its outgoing edges. Edges that point to the vertex are {b NOT} removed, they must be manually removed with {!remove_edge}. *) val union : 'a t -> 'a t -> 'a t val vertices : _ t -> vertex iter val vertices_l : _ t -> vertex list val of_list : (vertex * 'a * vertex) list -> 'a t val add_list : (vertex * 'a * vertex) list -> 'a t -> 'a t val to_list : 'a t -> (vertex * 'a * vertex) list val of_iter : (vertex * 'a * vertex) iter -> 'a t (** @since 2.8 *) val add_iter : (vertex * 'a * vertex) iter -> 'a t -> 'a t (** @since 2.8 *) val to_iter : 'a t -> (vertex * 'a * vertex) iter (** @since 2.8 *) val of_seq : (vertex * 'a * vertex) iter -> 'a t (** @deprecated use {!of_iter} instead *) val add_seq : (vertex * 'a * vertex) iter -> 'a t -> 'a t (** @deprecated use {!add_iter} instead *) val to_seq : 'a t -> (vertex * 'a * vertex) iter (** @deprecated use {!to_iter} instead *) end module Map(O : Map.OrderedType) : MAP with type vertex = O.t = struct module M = Map.Make(O) type vertex = O.t type 'a t = 'a M.t M.t (* vertex -> set of (vertex * label) *) let as_graph m = (fun v yield -> try let sub = M.find v m in M.iter (fun v' e -> yield (e, v')) sub with Not_found -> () ) let empty = M.empty let add_edge v1 e v2 m = let sub = try M.find v1 m with Not_found -> M.empty in M.add v1 (M.add v2 e sub) m let remove_edge v1 v2 m = try let map = M.remove v2 (M.find v1 m) in if M.is_empty map then M.remove v1 m else M.add v1 map m with Not_found -> m let add v m = if M.mem v m then m else M.add v M.empty m let remove v m = M.remove v m let union m1 m2 = M.merge (fun _ s1 s2 -> match s1, s2 with | Some s, None | None, Some s -> Some s | None, None -> assert false | Some s1, Some s2 -> let s = M.merge (fun _ e1 e2 -> match e1, e2 with | Some _, _ -> e1 | None, _ -> e2) s1 s2 in Some s) m1 m2 let vertices m yield = M.iter (fun v _ -> yield v) m let vertices_l m = M.fold (fun v _ acc -> v::acc) m [] let add_list l m = List.fold_left (fun m (v1,e,v2) -> add_edge v1 e v2 m) m l let of_list l = add_list l empty let to_list m = M.fold (fun v map acc -> M.fold (fun v' e acc -> (v,e,v')::acc) map acc) m [] let add_iter iter m = Iter.fold (fun m (v1,e,v2) -> add_edge v1 e v2 m) m iter let of_iter iter = add_iter iter empty let to_iter m k = M.iter (fun v map -> M.iter (fun v' e -> k(v,e,v')) map) m let add_seq = add_iter let of_seq = of_iter let to_seq = to_iter end (** {2 Misc} *) let of_list ~eq l = (fun v yield -> List.iter (fun (a,b) -> if eq a v then yield ((),b)) l) let of_fun f = (fun v yield -> let l = f v in List.iter (fun v' -> yield ((),v')) l ) let of_hashtbl tbl = (fun v yield -> try List.iter (fun b -> yield ((), b)) (Hashtbl.find tbl v) with Not_found -> () ) let divisors_graph = (fun i -> (* divisors of [i] that are [>= j] *) let rec divisors j i yield = if j < i then ( if (i mod j = 0) then yield ((),j); divisors (j+1) i yield ) in divisors 1 i )
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>