package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v2.8.tar.gz
md5=03b80e963186e91ddac62ef645bf7fb2
sha512=c8f434808be540c16926bf03d89f394d33fc2d092f963a7b6d412481229e0a96290f1ad7c7d522415115d35426b7aa0b3fda4b991ddc321dad279d402c9a0c0b
doc/src/containers.data/CCFun_vec.ml.html
Source file CCFun_vec.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
(* This file is free software, part of containers. See file "license" for more details. *) (*$inject let _listuniq = let g = Q.(small_list (pair small_int small_int)) in Q.map_same_type (fun l -> CCList.sort_uniq ~cmp:(fun a b -> Stdlib.compare (fst a)(fst b)) l ) g ;; *) (** {1 Hash Tries} *) type 'a sequence = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a printer = Format.formatter -> 'a -> unit type 'a ktree = unit -> [`Nil | `Node of 'a * 'a ktree list] (* TODO (** {2 Transient IDs} *) module Transient = struct type state = { mutable frozen: bool } type t = Nil | St of state let empty = Nil let equal a b = Stdlib.(==) a b let create () = St {frozen=false} let active = function Nil -> false | St st -> not st.frozen let frozen = function Nil -> true | St st -> st.frozen let freeze = function Nil -> () | St st -> st.frozen <- true let with_ f = let r = create() in try let x = f r in freeze r; x with e -> freeze r; raise e exception Frozen end *) (* function array *) module A = struct type 'a t = 'a array let length_log = 5 let max_length = 32 let mask = max_length-1 let () = assert (max_length = 1 lsl length_log) let length = Array.length let iteri = Array.iteri let iter = Array.iter let fold = Array.fold_left let map = Array.map let iteri_rev f a = for i = length a-1 downto 0 do f i a.(i) done let create () = [| |] let empty = [| |] let is_empty a = length a = 0 let return x = [| x |] let get a i = if i<0 || i >= length a then invalid_arg "A.get"; Array.unsafe_get a i (* push at the back *) let push x a = let n = length a in if n = max_length then invalid_arg "A.push"; let arr = Array.make (n+1) x in Array.blit a 0 arr 0 n; arr let pop a = let n = length a in if n=0 then invalid_arg "A.pop"; Array.sub a 0 (n-1) let append a b = let n_a = length a in let n_b = length b in if n_a + n_b > max_length then invalid_arg "A.append"; if n_a = 0 then b else if n_b = 0 then a else ( let arr = Array.make (n_a+n_b) (a.(0)) in Array.blit a 0 arr 0 n_a; Array.blit b 0 arr n_a n_b; arr ) let set ~mut a i x = if i<0 || i > length a || i >= max_length then invalid_arg "A.set"; if i=length a then ( (* insert in a longer copy *) let arr = Array.make (i+1) x in Array.blit a 0 arr 0 i; arr ) else if mut then ( (* replace element at [i] in place *) a.(i) <- x; a ) else ( (* replace element at [i] in copy *) let arr = Array.copy a in arr.(i) <- x; arr ) end (** {2 Functors} *) type 'a t = { size: int; leaves: 'a A.t; subs: 'a t A.t; } (* invariant: - [A.length leaves < A.max_length ==> A.is_empty subs] - either: * [exists n. forall i. subs[i].size = n] (all subtrees of same size) * [exists n i. (forall j<i. sub[j].size=32^{n+1}-1) & (forall j>=i, sub[j].size<32^{n+1}-1)] (prefix of subs has size of complete binary tree; suffix has smaller size (actually decreasing)) *) let empty = {size=0; leaves=A.empty; subs=A.empty} let is_empty {size;_} = size=0 (*$T is_empty empty *) let length {size;_} = size (*$T not (is_empty (return 2)) length (return 2) = 1 *) let return x = {leaves=A.return x; subs=A.empty; size=1} type idx_l = | I_one of int | I_cons of int * idx_l (* split an index into a low and high parts *) let low_idx_ i = i land A.mask let high_idx_ i = i lsr A.length_log let combine_idx i j = (i lsl A.length_log) lor j (* split an index into a high part, < 32, and a low part *) let split_idx i : idx_l = let rec aux high low = if high = 0 then low else if high < A.max_length then I_cons (high-1, low) else aux (high_idx_ high) (I_cons (low_idx_ high, low)) in aux (high_idx_ i) (I_one(low_idx_ i)) let get_ (i:int) (m:'a t) : 'a = let rec aux l m = match l with | I_one x -> assert (x < A.length m.leaves); A.get m.leaves x | I_cons (x, tl) -> aux tl (A.get m.subs x) in aux (split_idx i) m (*$Q _listuniq (fun l -> \ let m = of_list l in \ List.for_all (fun (i,y) -> get_exn i m = y) @@ List.mapi CCPair.make l) *) let get_exn i v = if i >= 0 && i < length v then get_ i v else raise Not_found let get i v = if i >= 0 && i < length v then Some (get_ i v) else None let push_ (i:int) (x:'a) (m:'a t) : 'a t = let rec aux l m = match l with | I_one i -> assert (i=A.length m.leaves); assert (A.length m.leaves < A.max_length); assert (A.is_empty m.subs); {m with size=m.size+1; leaves=A.push x m.leaves} | I_cons (i,tl) -> aux_replace_sub tl m i and aux_replace_sub l m x = assert (x <= A.length m.subs); (* insert in subtree, possibly a new one *) let sub_m = if x < A.length m.subs then A.get m.subs x else empty in let sub_m = aux l sub_m in {m with size=m.size+1; subs=A.set ~mut:false m.subs x sub_m} in aux (split_idx i) m let push x (v:_ t) : _ t = push_ v.size x v let pop_ i (m:'a t) : 'a * 'a t = let rec aux l m = match l with | I_one x -> assert (x+1 = A.length m.leaves); (* last one *) let x = A.get m.leaves x in x, {m with size=m.size-1; leaves=A.pop m.leaves} | I_cons (x,tl) -> aux_remove_sub tl m x and aux_remove_sub l m x = let sub = A.get m.subs x in let y, sub' = aux l sub in if is_empty sub' then ( assert (i+1 = A.length m.subs); (* last one *) y, {m with size=m.size-1; subs=A.pop m.subs} ) else ( y, {m with size=m.size-1; subs=A.set ~mut:false m.subs x sub} ) in aux (split_idx i) m let pop_exn (v:'a t) : 'a * 'a t = if v.size=0 then failwith "Fun_vec.pop_exn"; pop_ (v.size-1) v let pop (v:'a t) : ('a * 'a t) option = if v.size=0 then None else Some (pop_ (v.size-1) v) let iteri ~f (m : 'a t) : unit = (* basically, a 32-way BFS traversal. The queue contains subtrees to explore, along with their high_idx_ offsets *) let q : (int * 'a t) Queue.t = Queue.create() in Queue.push (0,m) q; while not (Queue.is_empty q) do let high, m = Queue.pop q in A.iteri (fun i x -> f (combine_idx high i) x) m.leaves; A.iteri (fun i sub -> Queue.push (combine_idx i high, sub) q) m.subs; done let iteri_rev ~f (m : 'a t) : unit = (* like {!iteri} but last element comes first *) let rec aux high m = A.iteri_rev (fun i sub -> aux (combine_idx i high) sub) m.subs; (* only now, explore current leaves *) A.iteri_rev (fun i x -> f (combine_idx high i) x) m.leaves; in aux 0 m let foldi ~f ~x m = let acc = ref x in iteri m ~f:(fun i x -> acc := f !acc i x); !acc let foldi_rev ~f ~x m = let acc = ref x in iteri_rev m ~f:(fun i x -> acc := f !acc i x); !acc let iter ~f m = iteri ~f:(fun _ x -> f x) m let fold ~f ~x m = foldi ~f:(fun acc _ x -> f acc x) ~x m let fold_rev ~f ~x m = foldi_rev ~f:(fun acc _ x -> f acc x) ~x m let rec map f m : _ t = { subs=A.map (map f) m.subs; leaves=A.map f m.leaves; size=m.size; } (*$QR Q.(pair (fun1 Observable.int bool)(small_list int)) (fun (f,l) -> let f = Q.Fn.apply f in (List.map f l) = (of_list l |> map f |> to_list) ) *) let append a b = if is_empty b then a else fold ~f:(fun v x -> push x v) ~x:a b (*$QR Q.(pair (small_list int)(small_list int)) (fun (l1,l2) -> (l1 @ l2) = (append (of_list l1)(of_list l2) |> to_list) ) *) let add_list v l = List.fold_left (fun v x -> push x v) v l let of_list l = add_list empty l let to_list m = fold_rev m ~f:(fun acc x -> x::acc) ~x:[] (*$QR Q.(small_list int) (fun l -> l = to_list (of_list l)) *) let add_seq v seq = let v = ref v in seq (fun x -> v := push x !v); !v let of_seq s = add_seq empty s let to_seq m yield = iteri ~f:(fun _ v -> yield v) m (*$Q _listuniq (fun l -> \ (List.sort Stdlib.compare l) = \ (l |> Iter.of_list |> of_seq |> to_seq |> Iter.to_list \ |> List.sort Stdlib.compare) ) *) let rec add_gen m g = match g() with | None -> m | Some x -> add_gen (push x m) g let of_gen g = add_gen empty g (* traverse the tree by increasing hash order, where the order compares hashes lexicographically by A.length_log-wide chunks of bits, least-significant chunks first *) let to_gen m = let q_cur : 'a Queue.t = Queue.create() in let q_sub : 'a t Queue.t = Queue.create() in Queue.push m q_sub; let rec next() = if not (Queue.is_empty q_cur) then ( Some (Queue.pop q_cur) ) else if not (Queue.is_empty q_sub) then ( let m = Queue.pop q_sub in A.iter (fun x -> Queue.push x q_cur) m.leaves; A.iter (fun sub -> Queue.push sub q_sub) m.subs; next() ) else None in next (*$Q _listuniq (fun l -> \ (List.sort Stdlib.compare l) = \ (l |> Gen.of_list |> of_gen |> to_gen |> Gen.to_list \ |> List.sort Stdlib.compare) ) *) let choose m = to_gen m () (*$T choose empty = None choose (of_list [1,1; 2,2]) <> None *) let choose_exn m = match choose m with | None -> raise Not_found | Some (k,v) -> k, v let pp ppv out m = let first = ref true in iter m ~f:(fun v -> if !first then first := false else Format.fprintf out ";@ "; ppv out v )
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>