package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v2.8.1.tar.gz
md5=d84e09c5d0abc501aa17cd502e31a038
sha512=8b832f4ada6035e80d81be0cfb7bdffb695ec67d465ed6097a144019e2b8a8f909095e78019c3da2d8181cc3cd730cd48f7519e87d3162442562103b7f36aabb
doc/src/containers.iter/CCKList.ml.html
Source file CCKList.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Continuation List} *) type 'a sequence = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a equal = 'a -> 'a -> bool type 'a ord = 'a -> 'a -> int type 'a printer = Format.formatter -> 'a -> unit type + 'a t = unit -> [ `Nil | `Cons of 'a * 'a t ] let nil () = `Nil let cons a b () = `Cons (a,b) let empty = nil let singleton x () = `Cons (x, nil) let rec _forever x () = `Cons (x, _forever x) let rec _repeat n x () = if n<=0 then `Nil else `Cons (x, _repeat (n-1) x) let repeat ?n x = match n with | None -> _forever x | Some n -> _repeat n x (*$T repeat ~n:4 0 |> to_list = [0;0;0;0] repeat ~n:0 1 |> to_list = [] repeat 1 |> take 20 |> to_list = (repeat ~n:20 1 |> to_list) *) let is_empty l = match l () with | `Nil -> true | `Cons _ -> false let head_exn l = match l() with | `Nil -> raise Not_found | `Cons (x, _) -> x let head l = match l() with `Nil -> None | `Cons (x, _) -> Some x let tail_exn l = match l() with | `Nil -> raise Not_found | `Cons (_, l) -> l let tail l = match l() with | `Nil -> None | `Cons (_, l) -> Some l let rec equal eq l1 l2 = match l1(), l2() with | `Nil, `Nil -> true | `Nil, _ | _, `Nil -> false | `Cons (x1,l1'), `Cons (x2,l2') -> eq x1 x2 && equal eq l1' l2' let rec compare cmp l1 l2 = match l1(), l2() with | `Nil, `Nil -> 0 | `Nil, _ -> -1 | _, `Nil -> 1 | `Cons (x1,l1'), `Cons (x2,l2') -> let c = cmp x1 x2 in if c = 0 then compare cmp l1' l2' else c let rec fold f acc res = match res () with | `Nil -> acc | `Cons (s, cont) -> fold f (f acc s) cont let rec iter f l = match l () with | `Nil -> () | `Cons (x, l') -> f x; iter f l' let iteri f l = let rec aux f l i = match l() with | `Nil -> () | `Cons (x, l') -> f i x; aux f l' (i+1) in aux f l 0 let length l = fold (fun acc _ -> acc+1) 0 l let rec take n (l:'a t) () = if n=0 then `Nil else match l () with | `Nil -> `Nil | `Cons (x,l') -> `Cons (x, take (n-1) l') let rec take_while p l () = match l () with | `Nil -> `Nil | `Cons (x,l') -> if p x then `Cons (x, take_while p l') else `Nil (*$T of_list [1;2;3;4] |> take_while (fun x->x < 4) |> to_list = [1;2;3] *) let rec drop n (l:'a t) () = match l () with | l' when n=0 -> l' | `Nil -> `Nil | `Cons (_,l') -> drop (n-1) l' () let rec drop_while p l () = match l() with | `Nil -> `Nil | `Cons (x,l') when p x -> drop_while p l' () | `Cons _ as res -> res (*$Q (Q.pair (Q.list Q.small_int) Q.small_int) (fun (l,n) -> \ let s = of_list l in let s1, s2 = take n s, drop n s in \ append s1 s2 |> to_list = l ) *) let rec map f l () = match l () with | `Nil -> `Nil | `Cons (x, l') -> `Cons (f x, map f l') (*$T (map ((+) 1) (1 -- 5) |> to_list) = (2 -- 6 |> to_list) *) let mapi f l = let rec aux f l i () = match l() with | `Nil -> `Nil | `Cons (x, tl) -> `Cons (f i x, aux f tl (i+1)) in aux f l 0 (*$T mapi (fun i x -> i,x) (1 -- 3) |> to_list = [0, 1; 1, 2; 2, 3] *) let rec fmap f (l:'a t) () = match l() with | `Nil -> `Nil | `Cons (x, l') -> begin match f x with | None -> fmap f l' () | Some y -> `Cons (y, fmap f l') end (*$T fmap (fun x -> if x mod 2=0 then Some (x*3) else None) (1--10) |> to_list \ = [6;12;18;24;30] *) let rec filter p l () = match l () with | `Nil -> `Nil | `Cons (x, l') -> if p x then `Cons (x, filter p l') else filter p l' () let rec append l1 l2 () = match l1 () with | `Nil -> l2 () | `Cons (x, l1') -> `Cons (x, append l1' l2) let rec cycle l () = append l (cycle l) () (*$T cycle (of_list [1;2]) |> take 5 |> to_list = [1;2;1;2;1] cycle (of_list [1; ~-1]) |> take 100_000 |> fold (+) 0 = 0 *) let rec unfold f acc () = match f acc with | None -> `Nil | Some (x, acc') -> `Cons (x, unfold f acc') (*$T let f = function 10 -> None | x -> Some (x, x+1) in \ unfold f 0 |> to_list = [0;1;2;3;4;5;6;7;8;9] *) let rec flat_map f l () = match l () with | `Nil -> `Nil | `Cons (x, l') -> _flat_map_app f (f x) l' () and _flat_map_app f l l' () = match l () with | `Nil -> flat_map f l' () | `Cons (x, tl) -> `Cons (x, _flat_map_app f tl l') let product_with f l1 l2 = let rec _next_left h1 tl1 h2 tl2 () = match tl1() with | `Nil -> _next_right ~die:true h1 tl1 h2 tl2 () | `Cons (x, tl1') -> _map_list_left x h2 (_next_right ~die:false (x::h1) tl1' h2 tl2) () and _next_right ~die h1 tl1 h2 tl2 () = match tl2() with | `Nil when die -> `Nil | `Nil -> _next_left h1 tl1 h2 tl2 () | `Cons (y, tl2') -> _map_list_right h1 y (_next_left h1 tl1 (y::h2) tl2') () and _map_list_left x l kont () = match l with | [] -> kont() | y::l' -> `Cons (f x y, _map_list_left x l' kont) and _map_list_right l y kont () = match l with | [] -> kont() | x::l' -> `Cons (f x y, _map_list_right l' y kont) in _next_left [] l1 [] l2 let product l1 l2 = product_with (fun x y -> x,y) l1 l2 let rec group eq l () = match l() with | `Nil -> `Nil | `Cons (x, l') -> `Cons (cons x (take_while (eq x) l'), group eq (drop_while (eq x) l')) (*$T of_list [1;1;1;2;2;3;3;1] |> group (=) |> map to_list |> to_list = \ [[1;1;1]; [2;2]; [3;3]; [1]] *) let rec _uniq eq prev l () = match prev, l() with | _, `Nil -> `Nil | None, `Cons (x, l') -> `Cons (x, _uniq eq (Some x) l') | Some y, `Cons (x, l') -> if eq x y then _uniq eq prev l' () else `Cons (x, _uniq eq (Some x) l') let uniq eq l = _uniq eq None l let rec filter_map f l () = match l() with | `Nil -> `Nil | `Cons (x, l') -> begin match f x with | None -> filter_map f l' () | Some y -> `Cons (y, filter_map f l') end let flatten l = flat_map (fun x->x) l let range i j = let rec aux i j () = if i=j then `Cons(i, nil) else if i<j then `Cons (i, aux (i+1) j) else `Cons (i, aux (i-1) j) in aux i j (*$T range 0 5 |> to_list = [0;1;2;3;4;5] range 0 0 |> to_list = [0] range 5 2 |> to_list = [5;4;3;2] *) let (--) = range let (--^) i j = if i=j then empty else if i<j then range i (j-1) else range i (j+1) (*$T 1 --^ 5 |> to_list = [1;2;3;4] 5 --^ 1 |> to_list = [5;4;3;2] 1 --^ 2 |> to_list = [1] 0 --^ 0 |> to_list = [] *) let rec fold2 f acc l1 l2 = match l1(), l2() with | `Nil, _ | _, `Nil -> acc | `Cons(x1,l1'), `Cons(x2,l2') -> fold2 f (f acc x1 x2) l1' l2' let rec map2 f l1 l2 () = match l1(), l2() with | `Nil, _ | _, `Nil -> `Nil | `Cons(x1,l1'), `Cons(x2,l2') -> `Cons (f x1 x2, map2 f l1' l2') let rec iter2 f l1 l2 = match l1(), l2() with | `Nil, _ | _, `Nil -> () | `Cons(x1,l1'), `Cons(x2,l2') -> f x1 x2; iter2 f l1' l2' let rec for_all2 f l1 l2 = match l1(), l2() with | `Nil, _ | _, `Nil -> true | `Cons(x1,l1'), `Cons(x2,l2') -> f x1 x2 && for_all2 f l1' l2' let rec exists2 f l1 l2 = match l1(), l2() with | `Nil, _ | _, `Nil -> false | `Cons(x1,l1'), `Cons(x2,l2') -> f x1 x2 || exists2 f l1' l2' let rec merge cmp l1 l2 () = match l1(), l2() with | `Nil, tl2 -> tl2 | tl1, `Nil -> tl1 | `Cons(x1,l1'), `Cons(x2,l2') -> if cmp x1 x2 < 0 then `Cons (x1, merge cmp l1' l2) else `Cons (x2, merge cmp l1 l2') let rec zip a b () = match a(), b() with | `Nil, _ | _, `Nil -> `Nil | `Cons (x, a'), `Cons (y, b') -> `Cons ((x,y), zip a' b') let unzip l = let rec first l () = match l() with | `Nil -> `Nil | `Cons ((x,_), tl) -> `Cons (x, first tl) and second l () = match l() with | `Nil -> `Nil | `Cons ((_, y), tl) -> `Cons (y, second tl) in first l, second l (*$Q Q.(list (pair int int)) (fun l -> \ let l = CCKList.of_list l in let a, b = unzip l in equal (=) l (zip a b)) *) (** {2 Implementations} *) let return x () = `Cons (x, nil) let pure = return let (>>=) xs f = flat_map f xs let (>|=) xs f = map f xs let (<*>) fs xs = product_with (fun f x -> f x) fs xs (** {2 Conversions} *) let rec _to_rev_list acc l = match l() with | `Nil -> acc | `Cons (x,l') -> _to_rev_list (x::acc) l' let to_rev_list l = _to_rev_list [] l let to_list l = let rec direct i (l:'a t) = match l () with | `Nil -> [] | _ when i=0 -> List.rev (_to_rev_list [] l) | `Cons (x, f) -> x :: direct (i-1) f in direct 200 l let of_list l = let rec aux l () = match l with | [] -> `Nil | x::l' -> `Cons (x, aux l') in aux l let of_array a = let rec aux a i () = if i=Array.length a then `Nil else `Cons (a.(i), aux a (i+1)) in aux a 0 let to_array l = match l() with | `Nil -> [| |] | `Cons (x, _) -> let n = length l in let a = Array.make n x in (* need first elem to create [a] *) iteri (fun i x -> a.(i) <- x) l; a (*$Q Q.(array int) (fun a -> of_array a |> to_array = a) *) (*$T of_array [| 1; 2; 3 |] |> to_list = [1;2;3] of_list [1;2;3] |> to_array = [| 1; 2; 3; |] *) let rec to_seq res k = match res () with | `Nil -> () | `Cons (s, f) -> k s; to_seq f k let to_gen l = let l = ref l in fun () -> match !l () with | `Nil -> None | `Cons (x,l') -> l := l'; Some x type 'a of_gen_state = | Of_gen_thunk of 'a gen | Of_gen_saved of [`Nil | `Cons of 'a * 'a t] let of_gen g = let rec consume r () = match !r with | Of_gen_saved cons -> cons | Of_gen_thunk g -> begin match g() with | None -> r := Of_gen_saved `Nil; `Nil | Some x -> let tl = consume (ref (Of_gen_thunk g)) in let l = `Cons (x, tl) in r := Of_gen_saved l; l end in consume (ref (Of_gen_thunk g)) (*$R let g = let n = ref 0 in fun () -> Some (incr n; !n) in let l = of_gen g in assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list); assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list); assert_equal [11;12] (drop 10 l |> take 2 |> to_list); *) let sort ~cmp l = let l = to_list l in of_list (List.sort cmp l) let sort_uniq ~cmp l = let l = to_list l in uniq (fun x y -> cmp x y = 0) (of_list (List.sort cmp l)) type 'a memoize = | MemoThunk | MemoSave of [`Nil | `Cons of 'a * 'a t] let rec memoize f = let r = ref MemoThunk in fun () -> match !r with | MemoSave l -> l | MemoThunk -> let l = match f() with | `Nil -> `Nil | `Cons (x, tail) -> `Cons (x, memoize tail) in r := MemoSave l; l (*$R let printer = Q.Print.(list int) in let gen () = let rec l = let r = ref 0 in fun () -> incr r; `Cons (!r, l) in l in let l1 = gen () in assert_equal ~printer [1;2;3;4] (take 4 l1 |> to_list); assert_equal ~printer [5;6;7;8] (take 4 l1 |> to_list); let l2 = gen () |> memoize in assert_equal ~printer [1;2;3;4] (take 4 l2 |> to_list); assert_equal ~printer [1;2;3;4] (take 4 l2 |> to_list); *) (** {2 Fair Combinations} *) let rec interleave a b () = match a() with | `Nil -> b () | `Cons (x, tail) -> `Cons (x, interleave b tail) let rec fair_flat_map f a () = match a() with | `Nil -> `Nil | `Cons (x, tail) -> let y = f x in interleave y (fair_flat_map f tail) () let rec fair_app f a () = match f() with | `Nil -> `Nil | `Cons (f1, fs) -> interleave (map f1 a) (fair_app fs a) () let (>>-) a f = fair_flat_map f a let (<.>) f a = fair_app f a (*$T interleave (of_list [1;3;5]) (of_list [2;4;6]) |> to_list = [1;2;3;4;5;6] fair_app (of_list [(+)1; ( * ) 3]) (of_list [1; 10]) \ |> to_list |> List.sort Pervasives.compare = [2; 3; 11; 30] *) (** {2 Infix} *) module Infix = struct let (>>=) = (>>=) let (>|=) = (>|=) let (<*>) = (<*>) let (>>-) = (>>-) let (<.>) = (<.>) let (--) = (--) let (--^) = (--^) end (** {2 Monadic Operations} *) module type MONAD = sig type 'a t val return : 'a -> 'a t val (>>=) : 'a t -> ('a -> 'b t) -> 'b t end module Traverse(M : MONAD) = struct open M let map_m f l = let rec aux acc l = match l () with | `Nil -> return (of_list (List.rev acc)) | `Cons (x,l') -> f x >>= fun x' -> aux (x' :: acc) l' in aux [] l let sequence_m l = map_m (fun x->x) l let rec fold_m f acc l = match l() with | `Nil -> return acc | `Cons (x,l') -> f acc x >>= fun acc' -> fold_m f acc' l' end (** {2 IO} *) let pp ?(sep=",") pp_item fmt l = let rec pp fmt l = match l() with | `Nil -> () | `Cons (x,l') -> Format.pp_print_string fmt sep; Format.pp_print_cut fmt (); pp_item fmt x; pp fmt l' in match l() with | `Nil -> () | `Cons (x,l') -> pp_item fmt x; pp fmt l'
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>