package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v2.8.1.tar.gz
md5=d84e09c5d0abc501aa17cd502e31a038
sha512=8b832f4ada6035e80d81be0cfb7bdffb695ec67d465ed6097a144019e2b8a8f909095e78019c3da2d8181cc3cd730cd48f7519e87d3162442562103b7f36aabb
doc/src/containers.data/CCPersistentHashtbl.ml.html
Source file CCPersistentHashtbl.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Persistent hash-table on top of OCaml's hashtables} *) type 'a sequence = ('a -> unit) -> unit type 'a printer = Format.formatter -> 'a -> unit type 'a equal = 'a -> 'a -> bool module type HashedType = sig type t val equal : t -> t -> bool val hash : t -> int end (** {2 Signature of such a hashtable} *) module type S = sig type key type 'a t val empty : unit -> 'a t (** Empty table. The table will be allocated at the first binding *) val create : int -> 'a t (** Create a new hashtable, with the given initial capacity *) val is_empty : 'a t -> bool (** Is the table empty? *) val find : 'a t -> key -> 'a (** Find the value for this key, or fails @raise Not_found if the key is not present in the table *) val get_exn : key -> 'a t -> 'a (** Synonym to {!find} with flipped arguments *) val get : key -> 'a t -> 'a option (** Safe version of !{get_exn} *) val mem : 'a t -> key -> bool (** Is the key bound? *) val length : _ t -> int (** Number of bindings *) val add : 'a t -> key -> 'a -> 'a t (** Add the binding to the table, returning a new table. The old binding for this key, if it exists, is shadowed and will be restored upon [remove tbl k]. @since 0.14 *) val replace : 'a t -> key -> 'a -> 'a t (** Add the binding to the table, returning a new table. This erases the current binding for [key], if any. *) val update : 'a t -> key -> ('a option -> 'a option) -> 'a t (** [update tbl key f] calls [f None] if [key] doesn't belong in [tbl], [f (Some v)] if [key -> v] otherwise; If [f] returns [None] then [key] is removed, else it returns [Some v'] and [key -> v'] is added. *) val remove : 'a t -> key -> 'a t (** Remove the key *) val copy : 'a t -> 'a t (** Fresh copy of the table; the underlying structure is not shared anymore, so using both tables alternatively will be efficient *) val merge : f:(key -> [`Left of 'a | `Right of 'b | `Both of 'a * 'b] -> 'c option) -> 'a t -> 'b t -> 'c t (** Merge two tables together into a new table. The function's argument correspond to values associated with the key (if present); if the function returns [None] the key will not appear in the result. *) val iter : 'a t -> (key -> 'a -> unit) -> unit (** Iterate over bindings *) val fold : ('b -> key -> 'a -> 'b) -> 'b -> 'a t -> 'b (** Fold over bindings *) val map : (key -> 'a -> 'b) -> 'a t -> 'b t (** Map all values *) val filter : (key -> 'a -> bool) -> 'a t -> 'a t val filter_map : (key -> 'a -> 'b option) -> 'a t -> 'b t val for_all : (key -> 'a -> bool) -> 'a t -> bool val exists : (key -> 'a -> bool) -> 'a t -> bool (** {3 Conversions} *) val of_seq : (key * 'a) sequence -> 'a t (** Add (replace) bindings from the sequence to the table *) val of_list : (key * 'a) list -> 'a t val add_seq : 'a t -> (key * 'a) sequence -> 'a t val add_list : 'a t -> (key * 'a) list -> 'a t val to_seq : 'a t -> (key * 'a) sequence (** Iter of the bindings of the table *) val to_list : 'a t -> (key * 'a) list (** {3 Misc} *) val equal : 'a equal -> 'a t equal val pp : ?sep:string -> ?arrow:string -> key printer -> 'a printer -> 'a t printer val stats : _ t -> Hashtbl.statistics (** Statistics on the internal table. @since 0.14 *) end (*$inject module H = Make(CCInt) let my_list = [ 1, "a"; 2, "b"; 3, "c"; 4, "d"; ] let my_seq = Iter.of_list my_list let _list_uniq = CCList.sort_uniq ~cmp:(fun a b -> Stdlib.compare (fst a) (fst b)) let _list_int_int = Q.( map_same_type _list_uniq (list_of_size Gen.(0 -- 40) (pair small_int small_int)) ) *) (** {2 Implementation} *) module Make(H : HashedType) : S with type key = H.t = struct type key = H.t (* main hashtable *) type 'a t = { mutable arr: 'a p_array; (* invariant: length is a power of 2 *) length: int; } (* piece of a persistent array *) and 'a p_array = | Arr of 'a bucket array | Set of int * 'a bucket * 'a t (* bucket of the hashtbl *) and 'a bucket = | Nil | Cons of key * 'a * 'a bucket (* first power of two that is bigger than [than], starting from [n] *) let rec power_two_larger ~than n = if n>= than then n else power_two_larger ~than (2*n) let create i = let i = power_two_larger ~than:i 16 in { length=0; arr=Arr (Array.make i Nil) } let empty () = create 16 let rec reroot_rec_ t k = match t.arr with | Arr a -> k a | Set (i, v, t') -> reroot_rec_ t' (fun a -> let v' = a.(i) in a.(i) <- v; t.arr <- Arr a; t'.arr <- Set (i, v', t); k a ) (* obtain the array *) let reroot_ t = match t.arr with | Arr a -> a | _ -> reroot_rec_ t (fun x -> x) let is_empty t = t.length = 0 let length t = t.length (* find index of [h] in [a] *) let find_idx_ a ~h = (* bitmask 00001111 if length(a) = 10000 *) h land (Array.length a - 1) let rec find_rec_ k l = match l with | Nil -> raise Not_found | Cons (k', v', l') -> if H.equal k k' then v' else find_rec_ k l' let find t k = let a = reroot_ t in (* unroll like crazy *) match a.(find_idx_ ~h:(H.hash k) a) with | Nil -> raise Not_found | Cons (k1, v1, l1) -> if H.equal k k1 then v1 else match l1 with | Nil -> raise Not_found | Cons (k2,v2,l2) -> if H.equal k k2 then v2 else match l2 with | Nil -> raise Not_found | Cons (k3,v3,l3) -> if H.equal k k3 then v3 else match l3 with | Nil -> raise Not_found | Cons (k4,v4,l4) -> if H.equal k k4 then v4 else find_rec_ k l4 (*$R let h = H.of_seq my_seq in OUnit.assert_equal "a" (H.find h 1); OUnit.assert_raises Not_found (fun () -> H.find h 5); let h' = H.replace h 5 "e" in OUnit.assert_equal "a" (H.find h' 1); OUnit.assert_equal "e" (H.find h' 5); OUnit.assert_equal "a" (H.find h 1); OUnit.assert_raises Not_found (fun () -> H.find h 5); *) (*$R let n = 10000 in let seq = Iter.map (fun i -> i, string_of_int i) Iter.(0--n) in let h = H.of_seq seq in Iter.iter (fun (k,v) -> OUnit.assert_equal ~printer:(fun x -> x) v (H.find h k)) seq; OUnit.assert_raises Not_found (fun () -> H.find h (n+1)); *) (*$QR _list_int_int (fun l -> let h = H.of_list l in List.for_all (fun (k,v) -> try H.find h k = v with Not_found -> false) l ) *) let get_exn k t = find t k let get k t = try Some (find t k) with Not_found -> None let mem t k = try ignore (find t k); true with Not_found -> false (*$R let h = H.of_seq Iter.(map (fun i -> i, string_of_int i) (0 -- 200)) in OUnit.assert_equal 201 (H.length h); *) (*$QR _list_int_int (fun l -> let h = H.of_list l in H.length h = List.length l ) *) let rec buck_rev_iter_ ~f l = match l with | Nil -> () | Cons (k,v,l') -> buck_rev_iter_ ~f l'; f k v (* resize [a] so it has capacity [new_size], and insert [k,v] in it *) let resize_ k v h a new_size = assert (new_size > Array.length a); let a' = Array.make new_size Nil in (* preserve order of elements by iterating on each bucket in rev order *) Array.iter (buck_rev_iter_ ~f:(fun k v -> let i = find_idx_ ~h:(H.hash k) a' in a'.(i) <- Cons (k,v,a'.(i)) ) ) a; let i = find_idx_ ~h a' in a'.(i) <- Cons (k,v,a'.(i)); a' (* insert [k,v] in [l] and returns new list and boolean flag indicating whether it's a new element *) let rec replace_rec_ k v l = match l with | Nil -> Cons (k,v,Nil), true | Cons (k',v',l') -> if H.equal k k' then Cons (k,v,l'), false else let l', is_new = replace_rec_ k v l' in Cons (k',v',l'), is_new let replace t k v = let a = reroot_ t in let h = H.hash k in let i = find_idx_ ~h a in match a.(i) with | Nil -> if t.length > (Array.length a) lsl 1 then ( (* resize *) let new_size = min (2 * (Array.length a)) Sys.max_array_length in let a = resize_ k v h a new_size in {length=t.length+1; arr=Arr a} ) else ( a.(i) <- Cons (k, v, Nil); let t' = {length=t.length + 1; arr=Arr a} in t.arr <- Set (i,Nil,t'); t' ) | Cons _ as l -> let l', is_new = replace_rec_ k v l in if is_new && t.length > (Array.length a) lsl 1 then ( (* resize and insert [k,v] (again, it's new anyway) *) let new_size = min (2 * (Array.length a)) Sys.max_array_length in let a = resize_ k v h a new_size in {length=t.length+1; arr=Arr a} ) else ( (* no resize *) a.(i) <- l'; let t' = { length=if is_new then t.length+1 else t.length; arr=Arr a; } in t.arr <- Set (i,l,t'); t' ) let add t k v = let a = reroot_ t in let h = H.hash k in let i = find_idx_ ~h a in if t.length > (Array.length a) lsl 1 then ( (* resize *) let new_size = min (2 * (Array.length a)) Sys.max_array_length in let a = resize_ k v h a new_size in {length=t.length+1; arr=Arr a} ) else ( (* prepend *) let old = a.(i) in a.(i) <- Cons (k, v, old); let t' = {length=t.length + 1; arr=Arr a} in t.arr <- Set (i,old,t'); t' ) (*$R let h = H.of_seq my_seq in OUnit.assert_equal "a" (H.find h 1); OUnit.assert_raises Not_found (fun () -> H.find h 5); let h1 = H.add h 5 "e" in OUnit.assert_equal "a" (H.find h1 1); OUnit.assert_equal "e" (H.find h1 5); OUnit.assert_equal "a" (H.find h 1); let h2 = H.add h1 5 "ee" in OUnit.assert_equal "ee" (H.find h2 5); OUnit.assert_raises Not_found (fun () -> H.find h 5); let h3 = H.remove h2 1 in OUnit.assert_equal "ee" (H.find h3 5); OUnit.assert_raises Not_found (fun () -> H.find h3 1); let h4 = H.remove h3 5 in OUnit.assert_equal "e" (H.find h4 5); OUnit.assert_equal "ee" (H.find h3 5); *) (* return [Some l'] if [l] changed into [l'] by removing [k] *) let rec remove_rec_ k l = match l with | Nil -> None | Cons (k', v', l') -> if H.equal k k' then Some l' else match remove_rec_ k l' with | None -> None | Some l' -> Some (Cons (k', v', l')) let remove t k = let a = reroot_ t in let i = find_idx_ ~h:(H.hash k) a in match a.(i) with | Nil -> t | Cons _ as l -> match remove_rec_ k l with | None -> t | Some l' -> a.(i) <- l'; let t' = {length=t.length-1; arr=Arr a} in t.arr <- Set (i,l,t'); t' (*$R let h = H.of_seq my_seq in OUnit.assert_equal (H.find h 2) "b"; OUnit.assert_equal (H.find h 3) "c"; OUnit.assert_equal (H.find h 4) "d"; OUnit.assert_equal (H.length h) 4; let h = H.remove h 2 in OUnit.assert_equal (H.find h 3) "c"; OUnit.assert_equal (H.length h) 3; OUnit.assert_raises Not_found (fun () -> H.find h 2) *) (*$R let open Iter.Infix in let n = 10000 in let seq = Iter.map (fun i -> i, string_of_int i) (0 -- n) in let h = H.of_seq seq in OUnit.assert_equal (n+1) (H.length h); let h = Iter.fold (fun h i -> H.remove h i) h (0 -- 500) in OUnit.assert_equal (n-500) (H.length h); OUnit.assert_bool "is_empty" (H.is_empty (H.create 16)); *) (*$QR _list_int_int (fun l -> let h = H.of_list l in let h = List.fold_left (fun h (k,_) -> H.remove h k) h l in H.is_empty h) *) let update t k f = let v = get k t in match v, f v with | None, None -> t (* no change *) | Some _, None -> remove t k | _, Some v' -> replace t k v' let copy t = let a = Array.copy (reroot_ t) in {t with arr=Arr a} let rec buck_iter_ ~f l = match l with | Nil -> () | Cons (k,v,l') -> f k v; buck_iter_ ~f l' let iter t f = let a = reroot_ t in Array.iter (buck_iter_ ~f) a let rec buck_fold_ f acc l = match l with | Nil -> acc | Cons (k,v,l') -> let acc = f acc k v in buck_fold_ f acc l' let fold f acc t = let a = reroot_ t in Array.fold_left (buck_fold_ f) acc a let map f t = let rec buck_map_ f l = match l with | Nil -> Nil | Cons (k,v,l') -> let v' = f k v in Cons (k,v', buck_map_ f l') in let a = reroot_ t in let a' = Array.map (buck_map_ f) a in {length=t.length; arr=Arr a'} let rec buck_filter_ ~f l = match l with | Nil -> Nil | Cons (k,v,l') -> let l' = buck_filter_ ~f l' in if f k v then Cons (k,v,l') else l' let buck_length_ b = buck_fold_ (fun n _ _ -> n+1) 0 b let filter p t = let a = reroot_ t in let length = ref 0 in let a' = Array.map (fun b -> let b' = buck_filter_ ~f:p b in length := !length + (buck_length_ b'); b' ) a in {length= !length; arr=Arr a'} let rec buck_filter_map_ ~f l = match l with | Nil -> Nil | Cons (k,v,l') -> let l' = buck_filter_map_ ~f l' in match f k v with | None -> l' | Some v' -> Cons (k,v',l') let filter_map f t = let a = reroot_ t in let length = ref 0 in let a' = Array.map (fun b -> let b' = buck_filter_map_ ~f b in length := !length + (buck_length_ b'); b' ) a in {length= !length; arr=Arr a'} exception ExitPTbl let for_all p t = try iter t (fun k v -> if not (p k v) then raise ExitPTbl); true with ExitPTbl -> false let exists p t = try iter t (fun k v -> if p k v then raise ExitPTbl); false with ExitPTbl -> true let merge ~f t1 t2 = let tbl = create (max (length t1) (length t2)) in let tbl = fold (fun tbl k v1 -> let comb = try `Both (v1, find t2 k) with Not_found -> `Left v1 in match f k comb with | None -> tbl | Some v' -> replace tbl k v') tbl t1 in fold (fun tbl k v2 -> if mem t1 k then tbl else match f k (`Right v2) with | None -> tbl | Some v' -> replace tbl k v' ) tbl t2 (*$R let t1 = H.of_list [1, "a"; 2, "b1"] in let t2 = H.of_list [2, "b2"; 3, "c"] in let t = H.merge ~f:(fun _ -> function | `Right v2 -> Some v2 | `Left v1 -> Some v1 | `Both (s1,s2) -> if s1 < s2 then Some s1 else Some s2) t1 t2 in OUnit.assert_equal ~printer:string_of_int 3 (H.length t); OUnit.assert_equal "a" (H.find t 1); OUnit.assert_equal "b1" (H.find t 2); OUnit.assert_equal "c" (H.find t 3); *) let add_seq init seq = let tbl = ref init in seq (fun (k,v) -> tbl := replace !tbl k v); !tbl let of_seq seq = add_seq (empty ()) seq let add_list init l = add_seq init (fun k -> List.iter k l) (*$QR _list_int_int (fun l -> let l1, l2 = List.partition (fun (x,_) -> x mod 2 = 0) l in let h1 = H.of_list l1 in let h2 = H.add_list h1 l2 in List.for_all (fun (k,v) -> H.find h2 k = v) l && List.for_all (fun (k,v) -> H.find h1 k = v) l1 && List.length l1 = H.length h1 && List.length l = H.length h2 ) *) let of_list l = add_list (empty ()) l let to_list t = fold (fun acc k v -> (k,v)::acc) [] t (*$R let h = H.of_seq my_seq in let l = Iter.to_list (H.to_seq h) in OUnit.assert_equal my_list (List.sort compare l) *) let to_seq t = fun k -> iter t (fun x y -> k (x,y)) (*$R let h = H.of_seq my_seq in OUnit.assert_equal "b" (H.find h 2); OUnit.assert_equal "a" (H.find h 1); OUnit.assert_raises Not_found (fun () -> H.find h 42); *) let equal eq t1 t2 = length t1 = length t2 && for_all (fun k v -> match get k t2 with | None -> false | Some v' -> eq v v' ) t1 let pp ?(sep=",") ?(arrow="->") pp_k pp_v fmt t = let first = ref true in iter t (fun k v -> if !first then first:=false else (Format.pp_print_string fmt sep; Format.pp_print_cut fmt ()); Format.fprintf fmt "%a %s %a" pp_k k arrow pp_v v ); () let stats t = let a = reroot_ t in let max_bucket_length = Array.fold_left (fun n b -> max n (buck_length_ b)) 0 a in let bucket_histogram = Array.make (max_bucket_length+1) 0 in Array.iter (fun b -> let l = buck_length_ b in bucket_histogram.(l) <- bucket_histogram.(l) + 1 ) a; {Hashtbl. num_bindings=t.length; num_buckets=Array.length a; max_bucket_length; bucket_histogram; } end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>