package containers

  1. Overview
  2. Docs
A modular, clean and powerful extension of the OCaml standard library

Install

Dune Dependency

Authors

Maintainers

Sources

v2.8.1.tar.gz
md5=d84e09c5d0abc501aa17cd502e31a038
sha512=8b832f4ada6035e80d81be0cfb7bdffb695ec67d465ed6097a144019e2b8a8f909095e78019c3da2d8181cc3cd730cd48f7519e87d3162442562103b7f36aabb

doc/src/containers.data/CCPersistentHashtbl.ml.html

Source file CCPersistentHashtbl.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

(* This file is free software, part of containers. See file "license" for more details. *)

(** {1 Persistent hash-table on top of OCaml's hashtables} *)

type 'a sequence = ('a -> unit) -> unit
type 'a printer = Format.formatter -> 'a -> unit
type 'a equal = 'a -> 'a -> bool

module type HashedType = sig
  type t
  val equal : t -> t -> bool
  val hash : t -> int
end

(** {2 Signature of such a hashtable} *)

module type S = sig
  type key
  type 'a t

  val empty : unit -> 'a t
  (** Empty table. The table will be allocated at the first binding *)

  val create : int -> 'a t
  (** Create a new hashtable, with the given initial capacity *)

  val is_empty : 'a t -> bool
  (** Is the table empty? *)

  val find : 'a t -> key -> 'a
  (** Find the value for this key, or fails
      @raise Not_found if the key is not present in the table *)

  val get_exn : key -> 'a t -> 'a
  (** Synonym to {!find} with flipped arguments *)

  val get : key -> 'a t -> 'a option
  (** Safe version of !{get_exn} *)

  val mem : 'a t -> key -> bool
  (** Is the key bound? *)

  val length : _ t -> int
  (** Number of bindings *)

  val add : 'a t -> key -> 'a -> 'a t
  (** Add the binding to the table, returning a new table. The old binding
      for this key, if it exists, is shadowed and will be restored upon
      [remove tbl k].
      @since 0.14 *)

  val replace : 'a t -> key -> 'a -> 'a t
  (** Add the binding to the table, returning a new table. This erases
      the current binding for [key], if any. *)

  val update : 'a t -> key -> ('a option -> 'a option) -> 'a t
  (** [update tbl key f] calls [f None] if [key] doesn't belong in [tbl],
      [f (Some v)] if [key -> v] otherwise; If [f] returns [None] then
      [key] is removed, else it returns [Some v'] and [key -> v'] is added. *)

  val remove : 'a t -> key -> 'a t
  (** Remove the key *)

  val copy : 'a t -> 'a t
  (** Fresh copy of the table; the underlying structure is not shared
      anymore, so using both tables alternatively will be efficient *)

  val merge :
    f:(key -> [`Left of 'a | `Right of 'b | `Both of 'a * 'b] -> 'c option) ->
    'a t -> 'b t -> 'c t
  (** Merge two tables together into a new table. The function's argument
      correspond to values associated with the key (if present); if the
      function returns [None] the key will not appear in the result. *)

  val iter : 'a t -> (key -> 'a -> unit) -> unit
  (** Iterate over bindings *)

  val fold : ('b -> key -> 'a -> 'b) -> 'b -> 'a t -> 'b
  (** Fold over bindings *)

  val map : (key -> 'a -> 'b) -> 'a t -> 'b t
  (** Map all values *)

  val filter : (key -> 'a -> bool) -> 'a t -> 'a t

  val filter_map : (key -> 'a -> 'b option) -> 'a t -> 'b t

  val for_all : (key -> 'a -> bool) -> 'a t -> bool

  val exists : (key -> 'a -> bool) -> 'a t -> bool

  (** {3 Conversions} *)

  val of_seq : (key * 'a) sequence -> 'a t
  (** Add (replace) bindings from the sequence to the table *)

  val of_list : (key * 'a) list -> 'a t

  val add_seq : 'a t -> (key * 'a) sequence -> 'a t

  val add_list : 'a t -> (key  * 'a) list -> 'a t

  val to_seq : 'a t -> (key * 'a) sequence
  (** Iter of the bindings of the table *)

  val to_list : 'a t -> (key * 'a) list

  (** {3 Misc} *)

  val equal : 'a equal -> 'a t equal

  val pp : ?sep:string -> ?arrow:string -> key printer -> 'a printer -> 'a t printer

  val stats : _ t -> Hashtbl.statistics
  (** Statistics on the internal table.
      @since 0.14 *)
end

(*$inject
  module H = Make(CCInt)

  let my_list =
    [ 1, "a";
      2, "b";
      3, "c";
      4, "d";
    ]

  let my_seq = Iter.of_list my_list

  let _list_uniq = CCList.sort_uniq
    ~cmp:(fun a b -> Stdlib.compare (fst a) (fst b))

  let _list_int_int = Q.(
    map_same_type _list_uniq
      (list_of_size Gen.(0 -- 40) (pair small_int small_int))
  )
*)

(** {2 Implementation} *)

module Make(H : HashedType) : S with type key = H.t = struct
  type key = H.t

  (* main hashtable *)
  type 'a t = {
    mutable arr: 'a p_array; (* invariant: length is a power of 2 *)
    length: int;
  }

  (* piece of a persistent array *)
  and 'a p_array =
    | Arr of 'a bucket array
    | Set of int * 'a bucket * 'a t

  (* bucket of the hashtbl *)
  and 'a bucket =
    | Nil
    | Cons of key * 'a * 'a bucket

  (* first power of two that is bigger than [than], starting from [n] *)
  let rec power_two_larger ~than n =
    if n>= than then n else power_two_larger ~than (2*n)

  let create i =
    let i = power_two_larger ~than:i 16 in
    { length=0;
      arr=Arr (Array.make i Nil)
    }

  let empty () = create 16

  let rec reroot_rec_ t k = match t.arr with
    | Arr a -> k a
    | Set (i, v, t') ->
      reroot_rec_ t' (fun a ->
        let v' = a.(i) in
        a.(i) <- v;
        t.arr <- Arr a;
        t'.arr <- Set (i, v', t);
        k a
      )

  (* obtain the array *)
  let reroot_ t = match t.arr with
    | Arr a -> a
    | _ -> reroot_rec_ t (fun x -> x)

  let is_empty t = t.length = 0

  let length t = t.length

  (* find index of [h] in [a] *)
  let find_idx_ a ~h =
    (* bitmask 00001111 if length(a) = 10000 *)
    h land (Array.length a - 1)

  let rec find_rec_ k l = match l with
    | Nil -> raise Not_found
    | Cons (k', v', l') ->
      if H.equal k k' then v' else find_rec_ k l'

  let find t k =
    let a = reroot_ t in
    (* unroll like crazy *)
    match a.(find_idx_ ~h:(H.hash k) a) with
      | Nil -> raise Not_found
      | Cons (k1, v1, l1) ->
        if H.equal k k1 then v1
        else match l1 with
          | Nil -> raise Not_found
          | Cons (k2,v2,l2) ->
            if H.equal k k2 then v2
            else match l2 with
              | Nil -> raise Not_found
              | Cons (k3,v3,l3) ->
                if H.equal k k3 then v3
                else match l3 with
                  | Nil -> raise Not_found
                  | Cons (k4,v4,l4) ->
                    if H.equal k k4 then v4 else find_rec_ k l4

  (*$R
    let h = H.of_seq my_seq in
    OUnit.assert_equal "a" (H.find h 1);
    OUnit.assert_raises Not_found (fun () -> H.find h 5);
    let h' = H.replace h 5 "e" in
    OUnit.assert_equal "a" (H.find h' 1);
    OUnit.assert_equal "e" (H.find h' 5);
    OUnit.assert_equal "a" (H.find h 1);
    OUnit.assert_raises Not_found (fun () -> H.find h 5);
  *)

  (*$R
    let n = 10000 in
    let seq = Iter.map (fun i -> i, string_of_int i) Iter.(0--n) in
    let h = H.of_seq seq in
    Iter.iter
      (fun (k,v) ->
        OUnit.assert_equal ~printer:(fun x -> x) v (H.find h k))
      seq;
    OUnit.assert_raises Not_found (fun () -> H.find h (n+1));
  *)

  (*$QR
    _list_int_int
      (fun l ->
        let h = H.of_list l in
        List.for_all
          (fun (k,v) ->
            try
              H.find h k = v
            with Not_found -> false)
          l
      )
  *)

  let get_exn k t = find t k

  let get k t =
    try Some (find t k)
    with Not_found -> None

  let mem t k =
    try ignore (find t k); true
    with Not_found -> false

  (*$R
    let h = H.of_seq
      Iter.(map (fun i -> i, string_of_int i)
        (0 -- 200)) in
    OUnit.assert_equal 201 (H.length h);
  *)

  (*$QR
    _list_int_int (fun l ->
      let h = H.of_list l in
      H.length h = List.length l
    )
  *)

  let rec buck_rev_iter_ ~f l = match l with
    | Nil -> ()
    | Cons (k,v,l') -> buck_rev_iter_ ~f l'; f k v

  (* resize [a] so it has capacity [new_size], and insert [k,v] in it *)
  let resize_ k v h a new_size =
    assert (new_size > Array.length a);
    let a' = Array.make new_size Nil in
    (* preserve order of elements by iterating on each bucket in rev order *)
    Array.iter
      (buck_rev_iter_
         ~f:(fun k v ->
           let i = find_idx_ ~h:(H.hash k) a' in
           a'.(i) <- Cons (k,v,a'.(i))
         )
      )
      a;
    let i = find_idx_ ~h a' in
    a'.(i) <- Cons (k,v,a'.(i));
    a'

  (* insert [k,v] in [l] and returns new list and boolean flag indicating
     whether it's a new element *)
  let rec replace_rec_ k v l = match l with
    | Nil -> Cons (k,v,Nil), true
    | Cons (k',v',l') ->
      if H.equal k k'
      then Cons (k,v,l'), false
      else
        let l', is_new = replace_rec_ k v l' in
        Cons (k',v',l'), is_new

  let replace t k v =
    let a = reroot_ t in
    let h = H.hash k in
    let i = find_idx_ ~h a in
    match a.(i) with
      | Nil ->
        if t.length > (Array.length a) lsl 1
        then (
          (* resize *)
          let new_size = min (2 * (Array.length a)) Sys.max_array_length in
          let a = resize_ k v h a new_size in
          {length=t.length+1; arr=Arr a}
        ) else (
          a.(i) <- Cons (k, v, Nil);
          let t' = {length=t.length + 1; arr=Arr a} in
          t.arr <- Set (i,Nil,t');
          t'
        )
      | Cons _ as l ->
        let l', is_new = replace_rec_ k v l in
        if is_new && t.length > (Array.length a) lsl 1
        then (
          (* resize and insert [k,v] (again, it's new anyway) *)
          let new_size = min (2 * (Array.length a)) Sys.max_array_length in
          let a = resize_ k v h a new_size in
          {length=t.length+1; arr=Arr a}
        ) else (
          (* no resize *)
          a.(i) <- l';
          let t' = {
            length=if is_new then t.length+1 else t.length;
            arr=Arr a;
          } in
          t.arr <- Set (i,l,t');
          t'
        )

  let add t k v =
    let a = reroot_ t in
    let h = H.hash k in
    let i = find_idx_ ~h a in
    if t.length > (Array.length a) lsl 1
    then (
      (* resize *)
      let new_size = min (2 * (Array.length a)) Sys.max_array_length in
      let a = resize_ k v h a new_size in
      {length=t.length+1; arr=Arr a}
    ) else (
      (* prepend *)
      let old = a.(i) in
      a.(i) <- Cons (k, v, old);
      let t' = {length=t.length + 1; arr=Arr a} in
      t.arr <- Set (i,old,t');
      t'
    )

  (*$R
    let h = H.of_seq my_seq in
    OUnit.assert_equal "a" (H.find h 1);
    OUnit.assert_raises Not_found (fun () -> H.find h 5);
    let h1 = H.add h 5 "e" in
    OUnit.assert_equal "a" (H.find h1 1);
    OUnit.assert_equal "e" (H.find h1 5);
    OUnit.assert_equal "a" (H.find h 1);
    let h2 = H.add h1 5 "ee" in
    OUnit.assert_equal "ee" (H.find h2 5);
    OUnit.assert_raises Not_found (fun () -> H.find h 5);
    let h3 = H.remove h2 1 in
    OUnit.assert_equal "ee" (H.find h3 5);
    OUnit.assert_raises Not_found (fun () -> H.find h3 1);
    let h4 = H.remove h3 5 in
    OUnit.assert_equal "e" (H.find h4 5);
    OUnit.assert_equal "ee" (H.find h3 5);
  *)


  (* return [Some l'] if [l] changed into [l'] by removing [k] *)
  let rec remove_rec_ k l = match l with
    | Nil -> None
    | Cons (k', v', l') ->
      if H.equal k k'
      then Some l'
      else match remove_rec_ k l' with
        | None -> None
        | Some l' -> Some (Cons (k', v', l'))

  let remove t k =
    let a = reroot_ t in
    let i = find_idx_ ~h:(H.hash k) a in
    match a.(i) with
      | Nil -> t
      | Cons _ as l ->
        match remove_rec_ k l with
          | None -> t
          | Some l' ->
            a.(i) <- l';
            let t' = {length=t.length-1; arr=Arr a} in
            t.arr <- Set (i,l,t');
            t'

  (*$R
    let h = H.of_seq my_seq in
    OUnit.assert_equal (H.find h 2) "b";
    OUnit.assert_equal (H.find h 3) "c";
    OUnit.assert_equal (H.find h 4) "d";
    OUnit.assert_equal (H.length h) 4;
    let h = H.remove h 2 in
    OUnit.assert_equal (H.find h 3) "c";
    OUnit.assert_equal (H.length h) 3;
    OUnit.assert_raises Not_found (fun () -> H.find h 2)
  *)

  (*$R
    let open Iter.Infix in
    let n = 10000 in
    let seq = Iter.map (fun i -> i, string_of_int i) (0 -- n) in
    let h = H.of_seq seq in
    OUnit.assert_equal (n+1) (H.length h);
    let h = Iter.fold (fun h i -> H.remove h i) h (0 -- 500) in
    OUnit.assert_equal (n-500) (H.length h);
    OUnit.assert_bool "is_empty" (H.is_empty (H.create 16));
  *)

  (*$QR
    _list_int_int (fun l ->
      let h = H.of_list l in
      let h = List.fold_left (fun h (k,_) -> H.remove h k) h l in
      H.is_empty h)
  *)

  let update t k f =
    let v = get k t in
    match v, f v with
      | None, None -> t  (* no change *)
      | Some _, None -> remove t k
      | _, Some v' -> replace t k v'

  let copy t =
    let a = Array.copy (reroot_ t) in
    {t with arr=Arr a}

  let rec buck_iter_ ~f l = match l with
    | Nil -> ()
    | Cons (k,v,l') -> f k v; buck_iter_ ~f l'

  let iter t f =
    let a = reroot_ t in
    Array.iter (buck_iter_ ~f) a

  let rec buck_fold_ f acc l = match l with
    | Nil -> acc
    | Cons (k,v,l') ->
      let acc = f acc k v in
      buck_fold_ f acc l'

  let fold f acc t =
    let a = reroot_ t in
    Array.fold_left (buck_fold_ f) acc a

  let map f t =
    let rec buck_map_ f l = match l with
      | Nil -> Nil
      | Cons (k,v,l') ->
        let v' = f k v in
        Cons (k,v', buck_map_ f l')
    in
    let a = reroot_ t in
    let a' = Array.map (buck_map_ f) a in
    {length=t.length; arr=Arr a'}

  let rec buck_filter_ ~f l = match l with
    | Nil -> Nil
    | Cons (k,v,l') ->
      let l' = buck_filter_ ~f l' in
      if f k v then Cons (k,v,l') else l'

  let buck_length_ b = buck_fold_ (fun n _ _ -> n+1) 0 b

  let filter p t =
    let a = reroot_ t in
    let length = ref 0 in
    let a' = Array.map
        (fun b ->
           let b' = buck_filter_ ~f:p b in
           length := !length + (buck_length_ b');
           b'
        ) a
    in
    {length= !length; arr=Arr a'}

  let rec buck_filter_map_ ~f l = match l with
    | Nil -> Nil
    | Cons (k,v,l') ->
      let l' = buck_filter_map_ ~f l' in
      match f k v with
        | None -> l'
        | Some v' ->
          Cons (k,v',l')

  let filter_map f t =
    let a = reroot_ t in
    let length = ref 0 in
    let a' = Array.map
        (fun b ->
           let b' = buck_filter_map_ ~f b in
           length := !length + (buck_length_ b');
           b'
        ) a
    in
    {length= !length; arr=Arr a'}

  exception ExitPTbl

  let for_all p t =
    try
      iter t (fun k v -> if not (p k v) then raise ExitPTbl);
      true
    with ExitPTbl -> false

  let exists p t =
    try
      iter t (fun k v -> if p k v then raise ExitPTbl);
      false
    with ExitPTbl -> true

  let merge ~f t1 t2 =
    let tbl = create (max (length t1) (length t2)) in
    let tbl = fold
        (fun tbl k v1 ->
           let comb =
             try `Both (v1, find t2 k)
             with Not_found -> `Left v1
           in
           match f k comb with
             | None -> tbl
             | Some v' -> replace tbl k v')
        tbl t1
    in
    fold
      (fun tbl k v2 ->
         if mem t1 k then tbl
         else match f k (`Right v2) with
           | None -> tbl
           | Some v' -> replace tbl k v'
      ) tbl t2

  (*$R
    let t1 = H.of_list [1, "a"; 2, "b1"] in
    let t2 = H.of_list [2, "b2"; 3, "c"] in
    let t = H.merge
      ~f:(fun _ -> function
        | `Right v2 -> Some v2
        | `Left v1 -> Some v1
        | `Both (s1,s2) -> if s1 < s2 then Some s1 else Some s2)
      t1 t2
    in
    OUnit.assert_equal ~printer:string_of_int 3 (H.length t);
    OUnit.assert_equal "a" (H.find t 1);
    OUnit.assert_equal "b1" (H.find t 2);
    OUnit.assert_equal "c" (H.find t 3);
  *)

  let add_seq init seq =
    let tbl = ref init in
    seq (fun (k,v) -> tbl := replace !tbl k v);
    !tbl

  let of_seq seq = add_seq (empty ()) seq

  let add_list init l =
    add_seq init (fun k -> List.iter k l)

  (*$QR
    _list_int_int (fun l ->
      let l1, l2 = List.partition (fun (x,_) -> x mod 2 = 0) l in
      let h1 = H.of_list l1 in
      let h2 = H.add_list h1 l2 in
      List.for_all
        (fun (k,v) -> H.find h2 k = v)
        l
      &&
      List.for_all
        (fun (k,v) -> H.find h1 k = v)
        l1
      &&
      List.length l1 = H.length h1
      &&
      List.length l = H.length h2
      )
  *)

  let of_list l = add_list (empty ()) l

  let to_list t = fold (fun acc k v -> (k,v)::acc) [] t

  (*$R
    let h = H.of_seq my_seq in
    let l = Iter.to_list (H.to_seq h) in
    OUnit.assert_equal my_list (List.sort compare l)
  *)

  let to_seq t =
    fun k ->
      iter t (fun x y -> k (x,y))

  (*$R
    let h = H.of_seq my_seq in
    OUnit.assert_equal "b" (H.find h 2);
    OUnit.assert_equal "a" (H.find h 1);
    OUnit.assert_raises Not_found (fun () -> H.find h 42);
  *)

  let equal eq t1 t2 =
    length t1 = length t2
    &&
    for_all
      (fun k v -> match get k t2 with
         | None -> false
         | Some v' -> eq v v'
      ) t1

  let pp ?(sep=",") ?(arrow="->") pp_k pp_v fmt t =
    let first = ref true in
    iter t
      (fun k v ->
         if !first then first:=false
         else (Format.pp_print_string fmt sep; Format.pp_print_cut fmt ());
         Format.fprintf fmt "%a %s %a" pp_k k arrow pp_v v
      );
    ()

  let stats t =
    let a = reroot_ t in
    let max_bucket_length =
      Array.fold_left (fun n b -> max n (buck_length_ b)) 0 a in
    let bucket_histogram = Array.make (max_bucket_length+1) 0 in
    Array.iter
      (fun b ->
         let l = buck_length_ b in
         bucket_histogram.(l) <- bucket_histogram.(l) + 1
      ) a;
    {Hashtbl.
      num_bindings=t.length;
      num_buckets=Array.length a;
      max_bucket_length;
      bucket_histogram;
    }
end

OCaml

Innovation. Community. Security.