package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v2.8.1.tar.gz
md5=d84e09c5d0abc501aa17cd502e31a038
sha512=8b832f4ada6035e80d81be0cfb7bdffb695ec67d465ed6097a144019e2b8a8f909095e78019c3da2d8181cc3cd730cd48f7519e87d3162442562103b7f36aabb
doc/src/containers.data/CCMultiMap.ml.html
Source file CCMultiMap.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Multimap} *) type 'a sequence = ('a -> unit) -> unit module type S = sig type key type value type t val empty : t (** Empty multimap *) val is_empty : t -> bool (** Empty multimap? *) val add : t -> key -> value -> t (** Add a key/value binding *) val remove : t -> key -> value -> t (** Remove the binding *) val remove_all : t -> key -> t (** Remove the key from the map *) val mem : t -> key -> bool (** Is there a binding for this key? *) val find : t -> key -> value list (** List of values for this key *) val find_iter : t -> key -> (value -> unit) -> unit (** Iterate on bindings for this key *) val count : t -> key -> int (** Number of bindings for this key *) val iter : t -> (key -> value -> unit) -> unit (** Iterate on all key/value *) val fold : t -> 'a -> ('a -> key -> value -> 'a) -> 'a (** Fold on all key/value *) val size : t -> int (** Number of keys *) val union : t -> t -> t (** Union of multimaps *) val inter : t -> t -> t (** Intersection of multimaps *) val diff : t -> t -> t (** Difference of maps, ie bindings of the first that are not in the second *) val equal : t -> t -> bool (** Same multimap *) val compare : t -> t -> int (** Total order on multimaps *) val submap : t -> t -> bool (** [submap m1 m2] is true iff all bindings of [m1] are also in [m2] *) val to_seq : t -> (key * value) sequence val of_seq : ?init:t -> (key * value) sequence -> t val keys : t -> key sequence val values : t -> value sequence (** Some values may occur several times *) end module type OrderedType = sig type t val compare : t -> t -> int end module Make(K : OrderedType)(V : OrderedType) = struct type key = K.t type value = V.t module M = Map.Make(K) module S = Set.Make(V) type t = S.t M.t (** Map of sets *) let empty = M.empty let is_empty = M.is_empty let add m k v = let set = try M.find k m with Not_found -> S.empty in M.add k (S.add v set) m let remove m k v = try let set = M.find k m in let set' = S.remove v set in if S.is_empty set' then M.remove k m else M.add k set' m with Not_found -> m let remove_all m k = M.remove k m let mem m k = M.mem k m let find m k = try let set = M.find k m in S.elements set with Not_found -> [] let find_iter m k f = try let set = M.find k m in S.iter f set with Not_found -> () let count m k = try let set = M.find k m in S.cardinal set with Not_found -> 0 let iter m f = M.iter (fun k set -> S.iter (fun v -> f k v) set) m let fold m acc f = M.fold (fun k set acc -> S.fold (fun v acc -> f acc k v) set acc) m acc let size m = M.cardinal m let union m1 m2 = M.merge (fun _k v1 v2 -> match v1, v2 with | None, None -> None | Some set1, Some set2 -> Some (S.union set1 set2) | Some set, None | None, Some set -> Some set) m1 m2 let inter m1 m2 = M.merge (fun _k v1 v2 -> match v1, v2 with | None, _ | _, None -> None | Some set1, Some set2 -> let set = S.inter set1 set2 in if S.is_empty set then None else Some set) m1 m2 let diff m1 m2 = M.merge (fun _k v1 v2 -> match v1, v2 with | None, _ -> None | Some set, None -> Some set | Some set1, Some set2 -> let set' = S.diff set1 set2 in if S.is_empty set' then None else Some set') m1 m2 let equal m1 m2 = M.equal S.equal m1 m2 let compare m1 m2 = M.compare S.compare m1 m2 let submap m1 m2 = M.for_all (fun k set1 -> try let set2 = M.find k m2 in S.subset set1 set2 with Not_found -> false) m1 let to_seq m k = iter m (fun x y -> k (x,y)) let of_seq ?(init=empty) seq = let m = ref init in seq (fun (k,v) -> m := add !m k v); !m let keys m k = M.iter (fun x _ -> k x) m let values m k = iter m (fun _ v -> k v) end module type BIDIR = sig type t type left type right val empty : t val is_empty : t -> bool val add : t -> left -> right -> t (** Add a binding (left,right) *) val remove : t -> left -> right -> t (** Remove a specific binding *) val cardinal_left : t -> int (** number of distinct left keys *) val cardinal_right : t -> int (** number of distinct right keys *) val remove_left : t -> left -> t (** Remove all bindings for the left key *) val remove_right : t -> right -> t (** Remove all bindings for the right key *) val mem_left : t -> left -> bool (** Is the left key present in at least one pair? *) val mem_right : t -> right -> bool (** Is the right key present in at least one pair? *) val find_left : t -> left -> right sequence (** Find all bindings for this given left-key *) val find_right : t -> right -> left sequence (** Find all bindings for this given right-key *) val find1_left : t -> left -> right option (** like {!find_left} but returns at most one value *) val find1_right : t -> right -> left option (** like {!find_right} but returns at most one value *) val fold : ('a -> left -> right -> 'a) -> 'a -> t -> 'a (** Fold on pairs *) val pairs : t -> (left * right) sequence (** Iterate on pairs *) val add_pairs : t -> (left * right) sequence -> t (** Add pairs *) val seq_left : t -> left sequence val seq_right : t -> right sequence end let _fold_seq f acc seq = let acc = ref acc in seq (fun x -> acc := f !acc x); !acc let _head_seq seq = let r = ref None in begin try seq (fun x -> r := Some x; raise Exit) with Exit -> (); end; !r module MakeBidir(L : OrderedType)(R : OrderedType) = struct type left = L.t type right = R.t module MapL = Make(L)(R) module MapR = Make(R)(L) type t = { left : MapL.t; right : MapR.t; } let empty = { left = MapL.empty; right = MapR.empty; } let is_empty m = MapL.is_empty m.left let add m a b = { left = MapL.add m.left a b; right = MapR.add m.right b a; } let remove m a b = { left = MapL.remove m.left a b; right = MapR.remove m.right b a; } let cardinal_left m = MapL.size m.left let cardinal_right m = MapR.size m.right let find_left m a = MapL.find_iter m.left a let find_right m b = MapR.find_iter m.right b let remove_left m a = _fold_seq (fun m b -> remove m a b) m (find_left m a) let remove_right m b = _fold_seq (fun m a -> remove m a b) m (find_right m b) let mem_left m a = MapL.mem m.left a let mem_right m b = MapR.mem m.right b let find1_left m a = _head_seq (find_left m a) let find1_right m b = _head_seq (find_right m b) let fold f acc m = MapL.fold m.left acc f let pairs m = MapL.to_seq m.left let add_pairs m seq = _fold_seq (fun m (a,b) -> add m a b) m seq let seq_left m = MapL.keys m.left let seq_right m = MapR.keys m.right end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>