package containers
A modular, clean and powerful extension of the OCaml standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v2.8.1.tar.gz
md5=d84e09c5d0abc501aa17cd502e31a038
sha512=8b832f4ada6035e80d81be0cfb7bdffb695ec67d465ed6097a144019e2b8a8f909095e78019c3da2d8181cc3cd730cd48f7519e87d3162442562103b7f36aabb
doc/src/containers.data/CCIntMap.ml.html
Source file CCIntMap.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Map specialized for Int keys} *) (* "Fast Mergeable Integer Maps", Okasaki & Gill. We use big-endian trees. *) (** Masks with exactly one bit active *) module Bit : sig type t = private int val highest : int -> t val min_int : t val equal : t -> t -> bool val is_0 : bit:t -> int -> bool val is_1 : bit:t -> int -> bool val mask : mask:t -> int -> int (* zeroes the bit, puts all lower bits to 1 *) val lt : t -> t -> bool val gt : t -> t -> bool val equal_int : int -> t -> bool end = struct type t = int let min_int = min_int let equal : t -> t -> bool = Stdlib.(=) let rec highest_bit_naive x m = if x=m then m else highest_bit_naive (x land (lnot m)) (2*m) let mask_20_ = 1 lsl 20 let mask_40_ = 1 lsl 40 let highest x = if x<0 then min_int else if Sys.word_size > 40 && x > mask_40_ then ( (* remove least significant 40 bits *) let x' = x land (lnot (mask_40_ -1)) in highest_bit_naive x' mask_40_ ) else if x> mask_20_ then ( (* small shortcut: remove least significant 20 bits *) let x' = x land (lnot (mask_20_ -1)) in highest_bit_naive x' mask_20_ ) else ( highest_bit_naive x 1 ) let is_0 ~bit x = x land bit = 0 let is_1 ~bit x = x land bit = bit let mask ~mask x = (x lor (mask -1)) land (lnot mask) (* low endian: let mask_ x ~mask = x land (mask - 1) *) let gt a b = (b != min_int) && (a = min_int || a > b) let lt a b = gt b a let equal_int = Stdlib.(=) end (*$inject let highest2 x : int = let rec aux i = if i=0 then i else if 1 = (x lsr i) then 1 lsl i else aux (i-1) in if x<0 then min_int else aux (Sys.word_size-2) *) (*$QR & ~count:1_000 Q.int (fun x -> if Bit.equal_int (highest2 x) (Bit.highest x) then true else QCheck.Test.fail_reportf "x=%d, highest=%d, highest2=%d@." x (Bit.highest x :> int) (highest2 x)) *) (*$inject let _list_uniq l = CCList.sort_uniq ~cmp:(fun a b-> Stdlib.compare (fst a)(fst b)) l *) type +'a t = | E (* empty *) | L of int * 'a (* leaf *) | N of int (* common prefix *) * Bit.t (* bit switch *) * 'a t * 'a t let empty = E let is_empty = function | E -> true | _ -> false (*$Q Q.(small_list (pair int int)) (fun l -> \ let m = of_list l in \ is_empty m = (cardinal m = 0)) *) let is_prefix_ ~prefix y ~bit = prefix = Bit.mask y ~mask:bit (*$Q Q.int (fun i -> \ let b = Bit.highest i in \ ((b:>int) land i = (b:>int)) && (i < 0 || ((b:>int) <= i && (i-(b:>int)) < (b:>int)))) Q.int (fun i -> (Bit.highest i = Bit.min_int) = (i < 0)) Q.int (fun i -> ((Bit.highest i:>int) < 0) = (Bit.highest i = Bit.min_int)) Q.int (fun i -> let j = (Bit.highest i :> int) in j land (j-1) = 0) *) (*$T (Bit.highest min_int :> int) = min_int (Bit.highest 2 :> int) = 2 (Bit.highest 17 :> int) = 16 (Bit.highest 300 :> int) = 256 *) (* helper: let b_of_i i = let rec f acc i = if i=0 then acc else let q, r = i/2, abs (i mod 2) in f (r::acc) q in f [] i;; *) (* low endian: let branching_bit_ a _ b _ = lowest_bit_ (a lxor b) *) let branching_bit_ a b = Bit.highest (a lxor b) (* TODO use hint in branching_bit_ *) let check_invariants t = (* check that keys are prefixed by every node in their path *) let rec check_keys path t = match t with | E -> true | L (k, _) -> List.for_all (fun (prefix, switch, side) -> is_prefix_ ~prefix k ~bit:switch && begin match side with | `Left -> Bit.is_0 k ~bit:switch | `Right -> Bit.is_1 k ~bit:switch end) path | N (prefix, switch, l, r) -> check_keys ((prefix, switch, `Left) :: path) l && check_keys ((prefix, switch, `Right) :: path) r in check_keys [] t (*$Q Q.(list (pair int bool)) (fun l -> \ check_invariants (of_list l)) *) let rec find_exn k t = match t with | E -> raise Not_found | L (k', v) when k = k' -> v | L _ -> raise Not_found | N (prefix, m, l, r) -> if is_prefix_ ~prefix k ~bit:m then ( if Bit.is_0 k ~bit:m then find_exn k l else find_exn k r ) else ( raise Not_found ) (* XXX could test with lt_unsigned_? *) (* if k <= prefix (* search tree *) then find_exn k l else find_exn k r *) let find k t = try Some (find_exn k t) with Not_found -> None (*$Q Q.(list (pair int int)) (fun l -> \ let l = _list_uniq l in \ let m = of_list l in \ List.for_all (fun (k,v) -> find k m = Some v) l) *) let mem k t = try ignore (find_exn k t); true with Not_found -> false (*$Q Q.(list (pair int int)) (fun l -> \ let m = of_list l in \ List.for_all (fun (k,_) -> mem k m) l) *) let mk_node_ prefix switch l r = match l, r with | E, o | o, E -> o | _ -> N (prefix, switch, l, r) (* join trees t1 and t2 with prefix p1 and p2 respectively (p1 and p2 do not overlap) *) let join_ t1 p1 t2 p2 = let switch = branching_bit_ p1 p2 in let prefix = Bit.mask p1 ~mask:switch in if Bit.is_0 p1 ~bit:switch then ( assert (Bit.is_1 p2 ~bit:switch); mk_node_ prefix switch t1 t2 ) else ( assert (Bit.is_0 p2 ~bit:switch); mk_node_ prefix switch t2 t1 ) let singleton k v = L (k, v) (* c: conflict function *) let rec insert_ c k v t = match t with | E -> L (k, v) | L (k', v') -> if k=k' then L (k, c ~old:v' v) else join_ t k' (L (k, v)) k | N (prefix, switch, l, r) -> if is_prefix_ ~prefix k ~bit:switch then ( if Bit.is_0 k ~bit:switch then N(prefix, switch, insert_ c k v l, r) else N(prefix, switch, l, insert_ c k v r) ) else ( join_ (L(k,v)) k t prefix ) let add k v t = insert_ (fun ~old:_ v -> v) k v t (*$Q & ~count:20 Q.(list (pair int int)) (fun l -> \ let l = _list_uniq l in let m = of_list l in \ List.for_all (fun (k,v) -> find_exn k m = v) l) *) let rec remove k t = match t with | E -> E | L (k', _) -> if k=k' then E else t | N (prefix, switch, l, r) -> if is_prefix_ ~prefix k ~bit:switch then ( if Bit.is_0 k ~bit:switch then mk_node_ prefix switch (remove k l) r else mk_node_ prefix switch l (remove k r) ) else ( t (* not present *) ) (*$Q & ~count:20 Q.(list (pair int int)) (fun l -> \ let l = _list_uniq l in let m = of_list l in \ List.for_all (fun (k,_) -> mem k m && not (mem k (remove k m))) l) *) let update k f t = try let v = find_exn k t in begin match f (Some v) with | None -> remove k t | Some v' -> add k v' t end with Not_found -> match f None with | None -> t | Some v -> add k v t (*$= & ~printer:Q.Print.(list (pair int int)) [1,1; 2, 22; 3, 3] \ (of_list [1,1;2,2;3,3] \ |> update 2 (function None -> assert false | Some _ -> Some 22) \ |> to_list |> List.sort Stdlib.compare) *) let doubleton k1 v1 k2 v2 = add k1 v1 (singleton k2 v2) let rec equal ~eq a b = Stdlib.(==) a b || begin match a, b with | E, E -> true | L (ka, va), L (kb, vb) -> ka = kb && eq va vb | N (pa, sa, la, ra), N (pb, sb, lb, rb) -> pa=pb && Bit.equal sa sb && equal ~eq la lb && equal ~eq ra rb | E, _ | N _, _ | L _, _ -> false end (*$Q Q.(list (pair int bool)) ( fun l -> \ equal ~eq:(=) (of_list l) (of_list (List.rev l))) *) let rec iter f t = match t with | E -> () | L (k, v) -> f k v | N (_, _, l, r) -> iter f l; iter f r let rec fold f t acc = match t with | E -> acc | L (k, v) -> f k v acc | N (_, _, l, r) -> let acc = fold f l acc in fold f r acc let cardinal t = fold (fun _ _ n -> n+1) t 0 let rec mapi f t = match t with | E -> E | L (k, v) -> L (k, f k v) | N (p, s, l, r) -> N (p, s, mapi f l, mapi f r) let rec map f t = match t with | E -> E | L (k, v) -> L (k, f v) | N (p, s, l, r) -> N (p, s, map f l, map f r) let rec choose_exn = function | E -> raise Not_found | L (k, v) -> k, v | N (_, _, l, _) -> choose_exn l let choose t = try Some (choose_exn t) with Not_found -> None (** {2 Whole-collection operations} *) let rec union f t1 t2 = match t1, t2 with | E, o | o, E -> o | L (k, v), o | o, L (k, v) -> (* insert k, v into o *) insert_ (fun ~old v -> f k old v) k v o | N (p1, m1, l1, r1), N (p2, m2, l2, r2) -> if p1 = p2 && Bit.equal m1 m2 then ( mk_node_ p1 m1 (union f l1 l2) (union f r1 r2) ) else if Bit.gt m1 m2 && is_prefix_ ~prefix:p1 p2 ~bit:m1 then ( if Bit.is_0 p2 ~bit:m1 then N (p1, m1, union f l1 t2, r1) else N (p1, m1, l1, union f r1 t2) ) else if Bit.lt m1 m2 && is_prefix_ ~prefix:p2 p1 ~bit:m2 then ( if Bit.is_0 p1 ~bit:m2 then N (p2, m2, union f t1 l2, r2) else N (p2, m2, l2, union f t1 r2) ) else ( join_ t1 p1 t2 p2 ) (*$Q & ~small:(fun (a,b) -> List.length a + List.length b) Q.(pair (list (pair int bool)) (list (pair int bool))) (fun (l1,l2) -> \ check_invariants (union (fun _ _ x -> x) (of_list l1) (of_list l2))) Q.(pair (list (pair int bool)) (list (pair int bool))) (fun (l1,l2) -> \ check_invariants (inter (fun _ _ x -> x) (of_list l1) (of_list l2))) *) (* associativity of union *) (*$Q & ~small:(fun (a,b,c) -> List.(length a + length b + length c)) Q.(let p = list (pair int int) in triple p p p) (fun (l1,l2,l3) -> \ let m1 = of_list l1 and m2 = of_list l2 and m3 = of_list l3 in \ let f _ x y = max x y in \ equal ~eq:(=) (union f (union f m1 m2) m3) (union f m1 (union f m2 m3))) *) (*$R assert_equal ~cmp:(equal ~eq:(=)) ~printer:(CCFormat.to_string (pp CCString.pp)) (of_list [1, "1"; 2, "2"; 3, "3"; 4, "4"]) (union (fun _ a b -> a) (of_list [1, "1"; 3, "3"]) (of_list [2, "2"; 4, "4"])); *) (*$R assert_equal ~cmp:(equal ~eq:(=)) ~printer:(CCFormat.to_string (pp CCString.pp)) (of_list [1, "1"; 2, "2"; 3, "3"; 4, "4"]) (union (fun _ a b -> a) (of_list [1, "1"; 2, "2"; 3, "3"]) (of_list [2, "2"; 4, "4"])) *) (*$Q Q.(list (pair int bool)) (fun l -> \ equal ~eq:(=) (of_list l) (union (fun _ a _ -> a) (of_list l)(of_list l))) *) (*$inject let union_l l1 l2 = let l2' = List.filter (fun (x,_) -> not @@ List.mem_assoc x l1) l2 in _list_uniq (l1 @ l2') let inter_l l1 l2 = let l2' = List.filter (fun (x,_) -> List.mem_assoc x l1) l2 in _list_uniq l2' *) (*$QR Q.(pair (small_list (pair small_int unit)) (small_list (pair small_int unit))) (fun (l1,l2) -> union_l l1 l2 = _list_uniq @@ to_list (union (fun _ _ _ ->())(of_list l1) (of_list l2))) *) (*$QR Q.(pair (small_list (pair small_int unit)) (small_list (pair small_int unit))) (fun (l1,l2) -> inter_l l1 l2 = _list_uniq @@ to_list (inter (fun _ _ _ ->()) (of_list l1) (of_list l2))) *) let rec inter f a b = match a, b with | E, _ | _, E -> E | L (k, v), o | o, L (k, v) -> begin try let v' = find_exn k o in L (k, f k v v') with Not_found -> E end | N (p1, m1, l1, r1), N (p2, m2, l2, r2) -> if p1 = p2 && Bit.equal m1 m2 then ( mk_node_ p1 m1 (inter f l1 l2) (inter f r1 r2) ) else if Bit.gt m1 m2 && is_prefix_ ~prefix:p1 p2 ~bit:m1 then ( if Bit.is_0 p2 ~bit:m1 then inter f l1 b else inter f r1 b ) else if Bit.lt m1 m2 && is_prefix_ ~prefix:p2 p1 ~bit:m2 then ( if Bit.is_0 p1 ~bit:m2 then inter f a l2 else inter f a r2 ) else E (*$R assert_equal ~cmp:(equal ~eq:(=)) ~printer:(CCFormat.to_string (pp CCString.pp)) (singleton 2 "2") (inter (fun _ a b -> a) (of_list [1, "1"; 2, "2"; 3, "3"]) (of_list [2, "2"; 4, "4"])) *) (*$Q Q.(list (pair int bool)) (fun l -> \ equal ~eq:(=) (of_list l) (inter (fun _ a _ -> a) (of_list l)(of_list l))) *) (* associativity of inter *) (*$Q & ~small:(fun (a,b,c) -> List.(length a + length b + length c)) Q.(let p = list (pair int int) in triple p p p) (fun (l1,l2,l3) -> \ let m1 = of_list l1 and m2 = of_list l2 and m3 = of_list l3 in \ let f _ x y = max x y in \ equal ~eq:(=) (inter f (inter f m1 m2) m3) (inter f m1 (inter f m2 m3))) *) let rec disjoint_union_ t1 t2 : _ t = match t1, t2 with | E, o | o, E -> o | L (k,v), o | o, L(k,v) -> insert_ (fun ~old:_ _ -> assert false) k v o | N (p1,m1,l1,r1), N(p2,m2,l2,r2) -> if p1 = p2 && Bit.equal m1 m2 then ( mk_node_ p1 m1 (disjoint_union_ l1 l2) (disjoint_union_ r1 r2) ) else if Bit.gt m1 m2 && is_prefix_ ~prefix:p1 p2 ~bit:m1 then ( if Bit.is_0 p2 ~bit:m1 then mk_node_ p1 m1 (disjoint_union_ l1 t2) r1 else mk_node_ p1 m1 l1 (disjoint_union_ r1 t2) ) else if Bit.lt m1 m2 && is_prefix_ ~prefix:p2 p1 ~bit:m2 then ( if Bit.is_0 p1 ~bit:m2 then mk_node_ p2 m2 (disjoint_union_ t1 l2) r2 else mk_node_ p2 m2 l2 (disjoint_union_ t1 r2) ) else ( join_ t1 p1 t2 p2 ) let rec filter f m = match m with | E -> E | L (k,v) -> if f k v then m else E | N (_,_,l,r) -> disjoint_union_ (filter f l) (filter f r) (*$QR Q.(pair (fun2 Observable.int Observable.int bool) (small_list (pair int int))) (fun (f,l) -> let QCheck.Fun(_,f) = f in _list_uniq (List.filter (fun (x,y) -> f x y) l) = (_list_uniq @@ to_list @@ filter f @@ of_list l) ) *) let rec filter_map f m = match m with | E -> E | L (k,v) -> begin match f k v with | None -> E | Some v' -> L(k,v') end | N (_,_,l,r) -> disjoint_union_ (filter_map f l) (filter_map f r) (*$QR Q.(pair (fun2 Observable.int Observable.int @@ option bool) (small_list (pair int int))) (fun (f,l) -> let QCheck.Fun(_,f) = f in _list_uniq (CCList.filter_map (fun (x,y) -> CCOpt.map (CCPair.make x) @@ f x y) l) = (_list_uniq @@ to_list @@ filter_map f @@ of_list l) ) *) let rec merge ~f t1 t2 : _ t = let merge1 t = filter_map (fun k v -> f k (`Left v)) t and merge2 t = filter_map (fun k v -> f k (`Right v)) t and add_some k opt m = match opt with | None -> m | Some v -> insert_ (fun ~old:_ _ -> assert false) k v m in match t1, t2 with | E, o -> merge2 o | o, E -> merge1 o | L (k, v), o -> let others = merge2 (remove k o) in add_some k (try f k (`Both (v,find_exn k o)) with Not_found -> f k (`Left v)) others | o, L (k, v) -> let others = merge1 (remove k o) in add_some k (try f k (`Both (find_exn k o,v)) with Not_found -> f k (`Right v)) others | N (p1, m1, l1, r1), N (p2, m2, l2, r2) -> if p1 = p2 && Bit.equal m1 m2 then ( mk_node_ p1 m1 (merge ~f l1 l2) (merge ~f r1 r2) ) else if Bit.gt m1 m2 && is_prefix_ ~prefix:p1 p2 ~bit:m1 then ( if Bit.is_0 p2 ~bit:m1 then mk_node_ p1 m1 (merge ~f l1 t2) (merge1 r1) else mk_node_ p1 m1 (merge1 l1) (merge ~f r1 t2) ) else if Bit.lt m1 m2 && is_prefix_ ~prefix:p2 p1 ~bit:m2 then ( if Bit.is_0 p1 ~bit:m2 then mk_node_ p2 m2 (merge ~f t1 l2) (merge2 r2) else mk_node_ p2 m2 (merge2 l2) (merge ~f t1 r2) ) else ( join_ (merge1 t1) p1 (merge2 t2) p2 ) (*$inject let merge_union _x o = match o with | `Left v | `Right v | `Both (v,_) -> Some v let merge_inter _x o = match o with | `Left _ | `Right _ -> None | `Both (v,_) -> Some v *) (*$QR Q.(let p = small_list (pair small_int small_int) in pair p p) (fun (l1,l2) -> check_invariants (merge ~f:merge_union (of_list l1) (of_list l2))) *) (*$QR Q.(let p = small_list (pair small_int small_int) in pair p p) (fun (l1,l2) -> check_invariants (merge ~f:merge_inter (of_list l1) (of_list l2))) *) (*$QR Q.(let p = small_list (pair small_int unit) in pair p p) (fun (l1,l2) -> let l1 = _list_uniq l1 and l2 = _list_uniq l2 in equal Stdlib.(=) (union (fun _ v1 _ -> v1) (of_list l1) (of_list l2)) (merge ~f:merge_union (of_list l1) (of_list l2))) *) (*$QR Q.(let p = small_list (pair small_int unit) in pair p p) (fun (l1,l2) -> let l1 = _list_uniq l1 and l2 = _list_uniq l2 in equal Stdlib.(=) (inter (fun _ v1 _ -> v1) (of_list l1) (of_list l2)) (merge ~f:merge_inter (of_list l1) (of_list l2))) *) (** {2 Conversions} *) type 'a sequence = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a klist = unit -> [`Nil | `Cons of 'a * 'a klist] let add_list t l = List.fold_left (fun t (k,v) -> add k v t) t l let of_list l = add_list empty l let to_list t = fold (fun k v l -> (k,v) :: l) t [] (*$Q Q.(list (pair int int)) (fun l -> \ let l = List.map (fun (k,v) -> abs k,v) l in \ let rec is_sorted = function [] | [_] -> true \ | x::y::tail -> x <= y && is_sorted (y::tail) in \ of_list l |> to_list |> List.rev_map fst |> is_sorted) *) (*$Q Q.(list (pair int int)) (fun l -> \ of_list l |> cardinal = List.length l) *) let add_seq t seq = let t = ref t in seq (fun (k,v) -> t := add k v !t); !t let of_seq seq = add_seq empty seq let to_seq t yield = iter (fun k v -> yield (k,v)) t let keys t yield = iter (fun k _ -> yield k) t let values t yield = iter (fun _ v -> yield v) t let rec add_gen m g = match g() with | None -> m | Some (k,v) -> add_gen (add k v m) g let of_gen g = add_gen empty g let to_gen m = let st = Stack.create () in Stack.push m st; let rec next() = if Stack.is_empty st then None else explore (Stack.pop st) and explore n = match n with | E -> next() (* backtrack *) | L (k,v) -> Some (k,v) | N (_, _, l, r) -> Stack.push r st; explore l in next (*$T doubleton 1 "a" 2 "b" |> to_gen |> of_gen |> to_list \ |> List.sort Stdlib.compare = [1, "a"; 2, "b"] *) (*$Q Q.(list (pair int bool)) (fun l -> \ let m = of_list l in equal ~eq:(=) m (m |> to_gen |> of_gen)) *) (* E < L < N; arbitrary order for switches *) let compare ~cmp a b = let rec cmp_gen cmp a b = match a(), b() with | None, None -> 0 | Some _, None -> 1 | None, Some _ -> -1 | Some (ka, va), Some (kb, vb) -> if ka=kb then ( let c = cmp va vb in if c=0 then cmp_gen cmp a b else c ) else ( compare ka kb ) in cmp_gen cmp (to_gen a) (to_gen b) (*$Q Q.(list (pair int bool)) ( fun l -> \ let m1 = of_list l and m2 = of_list (List.rev l) in \ compare ~cmp:Stdlib.compare m1 m2 = 0) *) (*$QR Q.(pair (list (pair int bool)) (list (pair int bool))) (fun (l1, l2) -> let l1 = List.map (fun (k,v) -> abs k,v) l1 in let l2 = List.map (fun (k,v) -> abs k,v) l2 in let m1 = of_list l1 and m2 = of_list l2 in let c = compare ~cmp:Stdlib.compare m1 m2 and c' = compare ~cmp:Stdlib.compare m2 m1 in (c = 0) = (c' = 0) && (c < 0) = (c' > 0) && (c > 0) = (c' < 0)) *) (*$QR Q.(pair (list (pair int bool)) (list (pair int bool))) (fun (l1, l2) -> let l1 = List.map (fun (k,v) -> abs k,v) l1 in let l2 = List.map (fun (k,v) -> abs k,v) l2 in let m1 = of_list l1 and m2 = of_list l2 in (compare ~cmp:Stdlib.compare m1 m2 = 0) = equal ~eq:(=) m1 m2) *) let rec add_klist m l = match l() with | `Nil -> m | `Cons ((k,v), tl) -> add_klist (add k v m) tl let of_klist l = add_klist empty l let to_klist m = (* [st]: stack of alternatives *) let rec explore st m () = match m with | E -> next st () | L (k,v) -> `Cons ((k, v), next st) | N (_, _, l, r) -> explore (r::st) l () and next st () = match st with | [] -> `Nil | x :: st' -> explore st' x () in next [m] (*$Q Q.(list (pair int bool)) (fun l -> \ let m = of_list l in equal ~eq:(=) m (m |> to_klist |> of_klist)) *) type 'a tree = unit -> [`Nil | `Node of 'a * 'a tree list] let rec as_tree t () = match t with | E -> `Nil | L (k, v) -> `Node (`Leaf (k, v), []) | N (prefix, switch, l, r) -> `Node (`Node (prefix, (switch:>int)), [as_tree l; as_tree r]) (** {2 IO} *) type 'a printer = Format.formatter -> 'a -> unit let pp pp_x out m = Format.fprintf out "@[<hov2>intmap {@,"; let first = ref true in iter (fun k v -> if !first then first := false else Format.pp_print_string out ", "; Format.fprintf out "%d -> " k; pp_x out v; Format.pp_print_cut out () ) m; Format.fprintf out "}@]" (* Some thorough tests from Jan Midtgaar https://github.com/jmid/qc-ptrees *) (*$inject let test_count = 2_500 open QCheck type instr_tree = | Empty | Singleton of int * int | Add of int * int * instr_tree | Remove of int * instr_tree | Union of instr_tree * instr_tree | Inter of instr_tree * instr_tree let rec to_string (a:instr_tree): string = let int_to_string = string_of_int in match a with | Empty -> "Empty" | Singleton (k,v) -> Printf.sprintf "Singleton(%d,%d)" k v | Add (k,v,t) -> Printf.sprintf "Add(%d,%d," k v ^ (to_string t) ^ ")" | Remove (n,t) -> "Remove (" ^ (int_to_string n) ^ ", " ^ (to_string t) ^ ")" | Union (t,t') -> "Union (" ^ (to_string t) ^ ", " ^ (to_string t') ^ ")" | Inter (t,t') -> "Inter (" ^ (to_string t) ^ ", " ^ (to_string t') ^ ")" let merge_f _ x y = min x y let rec interpret t : _ t = match t with | Empty -> empty | Singleton (k,v) -> singleton k v | Add (k,v,t) -> add k v (interpret t) | Remove (n,t) -> remove n (interpret t) | Union (t,t') -> let s = interpret t in let s' = interpret t' in union merge_f s s' | Inter (t,t') -> let s = interpret t in let s' = interpret t' in inter merge_f s s' let tree_gen int_gen : instr_tree Q.Gen.t = let open Gen in sized (fix (fun recgen n -> match n with | 0 -> oneof [return Empty; Gen.map2 (fun i j -> Singleton (i,j)) int_gen int_gen] | _ -> frequency [ (1, return Empty); (1, map2 (fun k v -> Singleton (k,v)) int_gen int_gen); (2, map3 (fun i j t -> Add (i,j,t)) int_gen int_gen (recgen (n-1))); (2, map2 (fun i t -> Remove (i,t)) int_gen (recgen (n-1))); (2, map2 (fun l r -> Union (l,r)) (recgen (n/2)) (recgen (n/2))); (2, map2 (fun l r -> Inter (l,r)) (recgen (n/2)) (recgen (n/2))); ])) let (<+>) = Q.Iter.(<+>) let rec tshrink t : instr_tree Q.Iter.t = match t with | Empty -> Iter.empty | Singleton (k,v) -> (Iter.return Empty) <+> (Iter.map (fun k' -> Singleton (k',v)) (Shrink.int k)) <+> (Iter.map (fun v' -> Singleton (k,v')) (Shrink.int v)) | Add (k,v,t) -> (Iter.of_list [Empty; t; Singleton (k,v)]) <+> (Iter.map (fun t' -> Add (k,v,t')) (tshrink t)) <+> (Iter.map (fun k' -> Add (k',v,t)) (Shrink.int k)) <+> (Iter.map (fun v' -> Add (k,v',t)) (Shrink.int v)) | Remove (i,t) -> (Iter.of_list [Empty; t]) <+> (Iter.map (fun t' -> Remove (i,t')) (tshrink t)) <+> (Iter.map (fun i' -> Remove (i',t)) (Shrink.int i)) | Union (t0,t1) -> (Iter.of_list [Empty;t0;t1]) <+> (Iter.map (fun t0' -> Union (t0',t1)) (tshrink t0)) <+> (Iter.map (fun t1' -> Union (t0,t1')) (tshrink t1)) | Inter (t0,t1) -> (Iter.of_list [Empty;t0;t1]) <+> (Iter.map (fun t0' -> Inter (t0',t1)) (tshrink t0)) <+> (Iter.map (fun t1' -> Inter (t0,t1')) (tshrink t1)) let arb_int = frequency [(5,small_signed_int); (3,int); (1, oneofl [min_int;max_int])] let arb_tree = make ~print:to_string ~shrink:tshrink (tree_gen arb_int.gen) let empty_m = [] let singleton_m k v = [k,v] let mem_m i s = List.mem_assoc i s let rec remove_m i s = match s with | [] -> [] | (j,v)::s' -> if i=j then s' else (j,v)::(remove_m i s') let add_m k v s = List.sort Stdlib.compare ((k,v)::remove_m k s) let rec union_m s s' = match s,s' with | [], _ -> s' | _, [] -> s | (k1,v1)::is,(k2,v2)::js -> if k1<k2 then (k1,v1)::(union_m is s') else if k1>k2 then (k2,v2)::(union_m s js) else (k1,min v1 v2)::(union_m is js) let rec inter_m s s' = match s with | [] -> [] | (k,v)::s -> if List.mem_assoc k s' then (k,min v (List.assoc k s'))::(inter_m s s') else inter_m s s' let abstract s = List.sort Stdlib.compare (fold (fun k v acc -> (k,v)::acc) s []) *) (* A bunch of agreement properties *) (*$= empty_m (let s = empty in abstract s) *) (*$QR & ~count:test_count (Q.pair arb_int arb_int) (fun (k,v) -> abstract (singleton k v) = singleton_m k v) *) (*$QR & ~count:test_count Q.(pair arb_tree arb_int) (fun (t,n) -> let s = interpret t in mem n s = mem_m n (abstract s)) *) (*$QR & ~count:test_count (triple arb_tree arb_int arb_int) (fun (t,k,v) -> let s = interpret t in abstract (add k v s) = add_m k v (abstract s)) *) (*$QR & ~count:test_count (pair arb_tree arb_int) (fun (t,n) -> let s = interpret t in abstract (remove n s) = remove_m n (abstract s)) *) (*$QR & ~count:test_count (pair arb_tree arb_tree) (fun (t,t') -> let s = interpret t in let s' = interpret t' in abstract (union merge_f s s') = union_m (abstract s) (abstract s')) *) (*$QR & ~count:test_count Q.(pair arb_tree arb_tree) (fun (t,t') -> let s = interpret t in let s' = interpret t' in abstract (inter merge_f s s') = inter_m (abstract s) (abstract s')) *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>