package combinat
Fast combinatorics functions for OCaml.
Install
Dune Dependency
Authors
Maintainers
Sources
combinat-1.0.tbz
sha256=6376a91c6d0b82f41a0ef0c857f851486c9de5f9e817ae36141ca86ee60259cb
md5=122247fb70b1bda02818e023de7165c7
doc/combinat/Combinat/index.html
Module Combinat
Source
Source
module Partition :
Base.Container.S0
with type t := Base.int * Base.int
and type elt :=
(Base.int, Bigarray.int_elt, Bigarray.c_layout) Bigarray.Array1.t
Compute the partitions of an integer n into m parts. See (Knuth 3b, pg. 2).
Source
module Partition_with_zeros :
Base.Container.S0
with type t := Base.int * Base.int
and type elt :=
(Base.int, Bigarray.int_elt, Bigarray.c_layout) Bigarray.Array1.t
Compute the partitions of an integer n into m parts, including partitions where some elements are zero.
Source
module Permutation :
Base.Container.S0
with type t := Base.int Base.array
and type elt :=
(Base.int, Bigarray.int_elt, Bigarray.c_layout) Bigarray.Array1.t
Compute the unique permutations of an array. See (Knuth 2b, pg. 1).
Source
module Combination :
Base.Container.S0
with type t := Base.int * Base.int
and type elt :=
(Base.int, Bigarray.int_elt, Bigarray.c_layout) Bigarray.Array1.t
Compute all of the t combinations of the numbers in 0, {i n}
.
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>