package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.10.0.tar.gz
md5=5abd76e8c51a47670645e91b21b57fc5
sha512=9c6fbe50c0b5a60566e877eeddadca0a339e2ce35deb5c1beceb03bc40eb6af2d519313e71859d88645b53fad591d4fa5288c633b185c9d765603da0f5b7dd7b
doc/src/catala.lcalc/closure_conversion.ml.html
Source file closure_conversion.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2022 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Catala_utils open Shared_ast open Ast module D = Dcalc.Ast type 'm ctx = { name_context : string; globally_bound_vars : ('m expr, typ) Var.Map.t; } let tys_as_tanys tys = List.map (fun x -> Mark.map (fun _ -> TAny) x) tys (** {1 Transforming closures}*) (** Returns the expression with closed closures and the set of free variables inside this new expression. Implementation guided by http://gallium.inria.fr/~fpottier/mpri/cours04.pdf#page=10 (environment-passing closure conversion). *) let rec transform_closures_expr : type m. m ctx -> m expr -> m expr Var.Set.t * m expr boxed = fun ctx e -> let m = Mark.get e in match Mark.remove e with | EStruct _ | EStructAccess _ | ETuple _ | ETupleAccess _ | EInj _ | EArray _ | ELit _ | EExternal _ | EAssert _ | EFatalError _ | EIfThenElse _ | ERaiseEmpty | ECatchEmpty _ -> Expr.map_gather ~acc:Var.Set.empty ~join:Var.Set.union ~f:(transform_closures_expr ctx) e | EVar v -> ( match Var.Map.find_opt v ctx.globally_bound_vars with | None -> Var.Set.singleton v, (Bindlib.box_var v, m) | Some (TArrow (targs, tret), _) -> (* Here we eta-expand the argument to make sure function pointers are correctly casted as closures *) let args = Array.init (List.length targs) (fun _ -> Var.make "eta_arg") in let arg_vars = List.map2 (fun v ty -> Expr.evar v (Expr.with_ty m ty)) (Array.to_list args) targs in let e = Expr.eabs (Expr.bind args (Expr.eapp ~f:(Expr.rebox e) ~args:arg_vars ~tys:targs (Expr.with_ty m tret))) targs m in let boxed = let ctx = (* We hide the type of the toplevel definition so that the function doesn't loop *) { ctx with globally_bound_vars = Var.Map.add v (TAny, Pos.no_pos) ctx.globally_bound_vars; } in Bindlib.box_apply (transform_closures_expr ctx) (Expr.Box.lift e) in Bindlib.unbox boxed | Some _ -> Var.Set.empty, (Bindlib.box_var v, m)) | EMatch { e; cases; name } -> let free_vars, new_e = (transform_closures_expr ctx) e in (* We do not close the clotures inside the arms of the match expression, since they get a special treatment at compilation to Scalc. *) let free_vars, new_cases = EnumConstructor.Map.fold (fun cons e1 (free_vars, new_cases) -> match Mark.remove e1 with | EAbs { binder; tys } -> let vars, body = Bindlib.unmbind binder in let new_free_vars, new_body = (transform_closures_expr ctx) body in let new_free_vars = Array.fold_left (fun acc v -> Var.Set.remove v acc) new_free_vars vars in let new_binder = Expr.bind vars new_body in ( Var.Set.union free_vars (Var.Set.diff new_free_vars (Var.Set.of_list (Array.to_list vars))), EnumConstructor.Map.add cons (Expr.eabs new_binder tys (Mark.get e1)) new_cases ) | _ -> failwith "should not happen") cases (free_vars, EnumConstructor.Map.empty) in free_vars, Expr.ematch ~e:new_e ~name ~cases:new_cases m | EApp { f = EAbs { binder; tys }, e1_pos; args; _ } -> (* let-binding, we should not close these *) let vars, body = Bindlib.unmbind binder in let free_vars, new_body = (transform_closures_expr ctx) body in let free_vars = Array.fold_left (fun acc v -> Var.Set.remove v acc) free_vars vars in let new_binder = Expr.bind vars new_body in let free_vars, new_args = List.fold_right (fun arg (free_vars, new_args) -> let new_free_vars, new_arg = (transform_closures_expr ctx) arg in Var.Set.union free_vars new_free_vars, new_arg :: new_args) args (free_vars, []) in ( free_vars, Expr.eapp ~f:(Expr.eabs new_binder (tys_as_tanys tys) e1_pos) ~args:new_args ~tys m ) | EAbs { binder; tys } -> (* λ x.t *) let binder_mark = Expr.with_ty m (TAny, Expr.mark_pos m) in let binder_pos = Expr.mark_pos binder_mark in (* Converting the closure. *) let vars, body = Bindlib.unmbind binder in (* t *) let body_vars, new_body = (transform_closures_expr ctx) body in (* [[t]] *) let extra_vars = Var.Set.diff body_vars (Var.Set.of_list (Array.to_list vars)) in let extra_vars_list = Var.Set.elements extra_vars in (* x1, ..., xn *) let code_var = Var.make ctx.name_context in (* code *) let closure_env_arg_var = Var.make "env" in let closure_env_var = Var.make "env" in let any_ty = TAny, binder_pos in (* let env = from_closure_env env in let arg0 = env.0 in ... *) let new_closure_body = Expr.make_let_in closure_env_var any_ty (Expr.eappop ~op:(Operator.FromClosureEnv, binder_pos) ~tys:[TClosureEnv, binder_pos] ~args:[Expr.evar closure_env_arg_var binder_mark] binder_mark) (Expr.make_multiple_let_in (Array.of_list extra_vars_list) (List.map (fun _ -> any_ty) extra_vars_list) (List.mapi (fun i _ -> Expr.make_tupleaccess (Expr.evar closure_env_var binder_mark) i (List.length extra_vars_list) binder_pos) extra_vars_list) new_body binder_pos) binder_pos in (* fun env arg0 ... -> new_closure_body *) let new_closure = Expr.make_abs (Array.concat [Array.make 1 closure_env_arg_var; vars]) new_closure_body ((TClosureEnv, binder_pos) :: tys) (Expr.pos e) in ( extra_vars, Expr.make_let_in code_var (TAny, Expr.pos e) new_closure (Expr.make_tuple ((Bindlib.box_var code_var, binder_mark) :: [ Expr.eappop ~op:(Operator.ToClosureEnv, binder_pos) ~tys:[TAny, Expr.pos e] ~args: [ (if extra_vars_list = [] then Expr.elit LUnit binder_mark else Expr.etuple (List.map (fun extra_var -> Bindlib.box_var extra_var, binder_mark) extra_vars_list) m); ] (Mark.get e); ]) m) (Expr.pos e) ) | EAppOp { op = ((HandleDefaultOpt | Fold | Map | Filter | Reduce), _) as op; tys; args; } -> (* Special case for some operators: its arguments shall remain thunks (which are closures) because if you want to extract it as a function you need these closures to preserve evaluation order, but backends that don't support closures will simply extract these operators in a inlined way and skip the thunks. *) let free_vars, new_args = List.fold_right (fun (arg : (lcalc, m) gexpr) (free_vars, new_args) -> let m_arg = Mark.get arg in match Mark.remove arg with | EAbs { binder; tys } -> let vars, arg = Bindlib.unmbind binder in let new_free_vars, new_arg = (transform_closures_expr ctx) arg in let new_arg = Expr.make_abs vars new_arg tys (Expr.mark_pos m_arg) in Var.Set.union free_vars new_free_vars, new_arg :: new_args | _ -> let new_free_vars, new_arg = transform_closures_expr ctx arg in Var.Set.union free_vars new_free_vars, new_arg :: new_args) args (Var.Set.empty, []) in free_vars, Expr.eappop ~op ~tys ~args:new_args (Mark.get e) | EAppOp _ -> (* This corresponds to an operator call, which we don't want to transform *) Expr.map_gather ~acc:Var.Set.empty ~join:Var.Set.union ~f:(transform_closures_expr ctx) e | EApp { f = EVar v, f_m; args; tys } when Var.Map.mem v ctx.globally_bound_vars -> (* This corresponds to a scope or toplevel function call, which we don't want to transform *) let free_vars, new_args = List.fold_right (fun arg (free_vars, new_args) -> let new_free_vars, new_arg = (transform_closures_expr ctx) arg in Var.Set.union free_vars new_free_vars, new_arg :: new_args) args (Var.Set.empty, []) in free_vars, Expr.eapp ~f:(Expr.evar v f_m) ~args:new_args ~tys m | EApp { f = e1; args; tys } -> let free_vars, new_e1 = (transform_closures_expr ctx) e1 in let code_env_var = Var.make "code_and_env" in let code_env_expr = let pos = Expr.pos e1 in Expr.evar code_env_var (Expr.with_ty (Mark.get e1) ( TTuple [ ( TArrow ((TClosureEnv, pos) :: tys, (TAny, Expr.pos e)), Expr.pos e ); TClosureEnv, pos; ], pos )) in let env_var = Var.make "env" in let code_var = Var.make "code" in let free_vars, new_args = List.fold_right (fun arg (free_vars, new_args) -> let new_free_vars, new_arg = (transform_closures_expr ctx) arg in Var.Set.union free_vars new_free_vars, new_arg :: new_args) args (free_vars, []) in let call_expr = let m1 = Mark.get e1 in let pos = Expr.mark_pos m in let env_arg_ty = TClosureEnv, Expr.pos e1 in let fun_ty = TArrow (env_arg_ty :: tys, (TAny, Expr.pos e)), Expr.pos e in Expr.make_multiple_let_in [| code_var; env_var |] [fun_ty; env_arg_ty] [ Expr.make_tupleaccess code_env_expr 0 2 pos; Expr.make_tupleaccess code_env_expr 1 2 pos; ] (Expr.eapp ~f:(Bindlib.box_var code_var, m1) ~args:((Bindlib.box_var env_var, m1) :: new_args) ~tys:(env_arg_ty :: tys) m) (Expr.pos e) in ( free_vars, Expr.make_let_in code_env_var (TAny, Expr.pos e) new_e1 call_expr (Expr.pos e) ) | _ -> . let transform_closures_scope_let ctx scope_body_expr = BoundList.map ~f:(fun var_next scope_let -> let _free_vars, new_scope_let_expr = (transform_closures_expr { ctx with name_context = Bindlib.name_of var_next }) scope_let.scope_let_expr in ( var_next, Bindlib.box_apply (fun scope_let_expr -> { scope_let with scope_let_expr; scope_let_typ = Mark.copy scope_let.scope_let_typ TAny; }) (Expr.Box.lift new_scope_let_expr) )) ~last:(fun res -> let _free_vars, new_scope_let_expr = (transform_closures_expr ctx) res in (* INVARIANT here: the result expr of a scope is simply a struct containing all output variables so nothing should be converted here, so no need to take into account free variables. *) Expr.Box.lift new_scope_let_expr) scope_body_expr let transform_closures_program (p : 'm program) : 'm program Bindlib.box = let (), new_code_items = BoundList.fold_map ~f:(fun toplevel_vars var code_item -> match code_item with | ScopeDef (name, body) -> let scope_input_var, scope_body_expr = Bindlib.unbind body.scope_body_expr in let ctx = { name_context = Mark.remove (ScopeName.get_info name); globally_bound_vars = toplevel_vars; } in let new_scope_lets = transform_closures_scope_let ctx scope_body_expr in let new_scope_body_expr = Bindlib.bind_var scope_input_var new_scope_lets in let ty = let pos = Mark.get (ScopeName.get_info name) in ( TArrow ( [TStruct body.scope_body_input_struct, pos], (TStruct body.scope_body_output_struct, pos) ), pos ) in ( Var.Map.add var ty toplevel_vars, var, Bindlib.box_apply (fun scope_body_expr -> ScopeDef (name, { body with scope_body_expr })) new_scope_body_expr ) | Topdef (name, ty, (EAbs { binder; tys }, m)) -> let v, expr = Bindlib.unmbind binder in let ctx = { name_context = Mark.remove (TopdefName.get_info name); globally_bound_vars = toplevel_vars; } in let _free_vars, new_expr = transform_closures_expr ctx expr in let new_binder = Expr.bind v new_expr in ( Var.Map.add var ty toplevel_vars, var, Bindlib.box_apply (fun e -> Topdef (name, ty, e)) (Expr.Box.lift (Expr.eabs new_binder tys m)) ) | Topdef (name, ty, expr) -> let ctx = { name_context = Mark.remove (TopdefName.get_info name); globally_bound_vars = toplevel_vars; } in let _free_vars, new_expr = transform_closures_expr ctx expr in ( Var.Map.add var ty toplevel_vars, var, Bindlib.box_apply (fun e -> Topdef (name, (TAny, Mark.get ty), e)) (Expr.Box.lift new_expr) )) ~last:(fun _ () -> (), Bindlib.box ()) ~init:Var.Map.empty p.code_items in (* Now we need to further tweak [decl_ctx] because some of the user-defined types can have closures in them and these closured might have changed type. So we reset them to [TAny] and leave the typechecker to figure it out. This will not yield any type unification conflicts because of the special type [TClosureEnv]. Indeed, consider the following closure: [let f = if ... then fun v -> x + v else fun v -> v]. To be typed correctly once converted, this closure needs an existential type, this is what [TClosureEnv] is for. This kind of situation is difficult to produce using the Catala surface language: it can only happen if you store a closure which is the output of a scope inside a user-defined data structure, and if you do it in two different places in the code with two closures that don't have the same capture footprint. See [tests/tests_func/good/scope_call_func_struct_closure.catala_en]. *) let new_decl_ctx = let rec replace_fun_typs t = match Mark.remove t with | TArrow (t1, t2) -> ( TTuple [ ( TArrow ( (TClosureEnv, Pos.no_pos) :: List.map replace_fun_typs t1, replace_fun_typs t2 ), Pos.no_pos ); TClosureEnv, Pos.no_pos; ], Mark.get t ) | TDefault t' -> TDefault (replace_fun_typs t'), Mark.get t | TOption t' -> TOption (replace_fun_typs t'), Mark.get t | TAny | TClosureEnv | TLit _ | TEnum _ | TStruct _ -> t | TArray ts -> TArray (replace_fun_typs ts), Mark.get t | TTuple ts -> TTuple (List.map replace_fun_typs ts), Mark.get t in { p.decl_ctx with ctx_structs = StructName.Map.map (StructField.Map.map replace_fun_typs) p.decl_ctx.ctx_structs; ctx_enums = EnumName.Map.map (EnumConstructor.Map.map replace_fun_typs) p.decl_ctx.ctx_enums; (* Toplevel definitions may not contain scope calls or take functions as arguments at the moment, which ensures that their interfaces aren't changed by the conversion *) } in Bindlib.box_apply (fun new_code_items -> { code_items = new_code_items; decl_ctx = new_decl_ctx; module_name = p.module_name; lang = p.lang; }) new_code_items (** {1 Hoisting closures}*) type 'm hoisted_closure = { name : 'm expr Var.t; ty : typ; closure : (lcalc, 'm) boxed_gexpr (* Starts with [EAbs]. *); } let rec hoist_closures_expr : type m. string -> m expr -> m hoisted_closure list * m expr boxed = fun name_context e -> let m = Mark.get e in match Mark.remove e with | EMatch { e; cases; name } -> let collected_closures, new_e = (hoist_closures_expr name_context) e in (* We do not close the closures inside the arms of the match expression, since they get a special treatment at compilation to Scalc. *) let collected_closures, new_cases = EnumConstructor.Map.fold (fun cons e1 (collected_closures, new_cases) -> match Mark.remove e1 with | EAbs { binder; tys } -> let vars, body = Bindlib.unmbind binder in let new_collected_closures, new_body = (hoist_closures_expr name_context) body in let new_binder = Expr.bind vars new_body in ( collected_closures @ new_collected_closures, EnumConstructor.Map.add cons (Expr.eabs new_binder tys (Mark.get e1)) new_cases ) | _ -> failwith "should not happen") cases (collected_closures, EnumConstructor.Map.empty) in collected_closures, Expr.ematch ~e:new_e ~name ~cases:new_cases m | EApp { f = EAbs { binder; tys }, e1_pos; args; _ } -> (* let-binding, we should not close these *) let vars, body = Bindlib.unmbind binder in let collected_closures, new_body = (hoist_closures_expr name_context) body in let new_binder = Expr.bind vars new_body in let collected_closures, new_args = List.fold_right (fun arg (collected_closures, new_args) -> let new_collected_closures, new_arg = (hoist_closures_expr name_context) arg in collected_closures @ new_collected_closures, new_arg :: new_args) args (collected_closures, []) in ( collected_closures, Expr.eapp ~f:(Expr.eabs new_binder (tys_as_tanys tys) e1_pos) ~args:new_args ~tys m ) | EAppOp { op = ((HandleDefaultOpt | Fold | Map | Filter | Reduce), _) as op; tys; args; } -> (* Special case for some operators: its arguments closures thunks because if you want to extract it as a function you need these closures to preserve evaluation order, but backends that don't support closures will simply extract these operators in a inlined way and skip the thunks. *) let collected_closures, new_args = List.fold_right (fun (arg : (lcalc, m) gexpr) (collected_closures, new_args) -> let m_arg = Mark.get arg in match Mark.remove arg with | EAbs { binder; tys } -> let vars, arg = Bindlib.unmbind binder in let new_collected_closures, new_arg = (hoist_closures_expr name_context) arg in let new_arg = Expr.make_abs vars new_arg tys (Expr.mark_pos m_arg) in new_collected_closures @ collected_closures, new_arg :: new_args | _ -> let new_collected_closures, new_arg = hoist_closures_expr name_context arg in new_collected_closures @ collected_closures, new_arg :: new_args) args ([], []) in collected_closures, Expr.eappop ~op ~args:new_args ~tys (Mark.get e) | EAbs { tys; _ } -> (* this is the closure we want to hoist*) let closure_var = Var.make ("closure_" ^ name_context) in (* TODO: This will end up as a toplevel name. However for now we assume toplevel names are unique, but this breaks this assertions and can lead to name wrangling in the backends. We need to have a better system for name disambiguation when for instance printing to Dcalc/Lcalc/Scalc but also OCaml, Python, etc. *) ( [ { name = closure_var; ty = TArrow (tys, (TAny, Expr.mark_pos m)), Expr.mark_pos m; closure = Expr.rebox e; }; ], Expr.make_var closure_var m ) | EApp _ | EStruct _ | EStructAccess _ | ETuple _ | ETupleAccess _ | EInj _ | EArray _ | ELit _ | EAssert _ | EFatalError _ | EAppOp _ | EIfThenElse _ | ERaiseEmpty | ECatchEmpty _ | EVar _ -> Expr.map_gather ~acc:[] ~join:( @ ) ~f:(hoist_closures_expr name_context) e | EExternal _ -> failwith "unimplemented" | _ -> . let hoist_closures_scope_let name_context scope_body_expr = BoundList.fold_right ~f:(fun scope_let var_next (hoisted_closures, next_scope_lets) -> let new_hoisted_closures, new_scope_let_expr = (hoist_closures_expr (Bindlib.name_of var_next)) scope_let.scope_let_expr in ( new_hoisted_closures @ hoisted_closures, Bindlib.box_apply2 (fun scope_let_next scope_let_expr -> Cons ({ scope_let with scope_let_expr }, scope_let_next)) (Bindlib.bind_var var_next next_scope_lets) (Expr.Box.lift new_scope_let_expr) )) ~init:(fun res -> let hoisted_closures, new_scope_let_expr = (hoist_closures_expr name_context) res in (* INVARIANT here: the result expr of a scope is simply a struct containing all output variables so nothing should be converted here, so no need to take into account free variables. *) ( hoisted_closures, Bindlib.box_apply (fun res -> Last res) (Expr.Box.lift new_scope_let_expr) )) scope_body_expr let rec hoist_closures_code_item_list (code_items : (lcalc, 'm) gexpr code_item_list) : (lcalc, 'm) gexpr code_item_list Bindlib.box = match code_items with | Last () -> Bindlib.box (Last ()) | Cons (code_item, next_code_items) -> let code_item_var, next_code_items = Bindlib.unbind next_code_items in let hoisted_closures, new_code_item = match code_item with | ScopeDef (name, body) -> let scope_input_var, scope_body_expr = Bindlib.unbind body.scope_body_expr in let new_hoisted_closures, new_scope_lets = hoist_closures_scope_let (fst (ScopeName.get_info name)) scope_body_expr in let new_scope_body_expr = Bindlib.bind_var scope_input_var new_scope_lets in ( new_hoisted_closures, Bindlib.box_apply (fun scope_body_expr -> ScopeDef (name, { body with scope_body_expr })) new_scope_body_expr ) | Topdef (name, ty, (EAbs { binder; tys }, m)) -> let v, expr = Bindlib.unmbind binder in let new_hoisted_closures, new_expr = hoist_closures_expr (Mark.remove (TopdefName.get_info name)) expr in let new_binder = Expr.bind v new_expr in ( new_hoisted_closures, Bindlib.box_apply (fun e -> Topdef (name, ty, e)) (Expr.Box.lift (Expr.eabs new_binder tys m)) ) | Topdef (name, ty, expr) -> let new_hoisted_closures, new_expr = hoist_closures_expr (Mark.remove (TopdefName.get_info name)) expr in ( new_hoisted_closures, Bindlib.box_apply (fun e -> Topdef (name, (TAny, Mark.get ty), e)) (Expr.Box.lift new_expr) ) in let next_code_items = hoist_closures_code_item_list next_code_items in let next_code_items = Bindlib.box_apply2 (fun next_code_items new_code_item -> Cons (new_code_item, next_code_items)) (Bindlib.bind_var code_item_var next_code_items) new_code_item in let next_code_items = List.fold_left (fun (next_code_items : (lcalc, 'm) gexpr code_item_list Bindlib.box) (hoisted_closure : 'm hoisted_closure) -> let next_code_items = Bindlib.bind_var hoisted_closure.name next_code_items in let closure, closure_mark = hoisted_closure.closure in Bindlib.box_apply2 (fun next_code_items closure -> Cons ( Topdef ( TopdefName.fresh [] ( Bindlib.name_of hoisted_closure.name, Expr.mark_pos closure_mark ), hoisted_closure.ty, (closure, closure_mark) ), next_code_items )) next_code_items closure) next_code_items hoisted_closures in next_code_items let hoist_closures_program (p : 'm program) : 'm program Bindlib.box = let new_code_items = hoist_closures_code_item_list p.code_items in (*TODO: we need to insert the hoisted closures just before the scopes they belong to, because some of them call sub-scopes and putting them all at the beginning breaks dependency ordering. *) Bindlib.box_apply (fun new_code_items -> { p with code_items = new_code_items }) new_code_items (** {1 Closure conversion}*) let closure_conversion (p : 'm program) : untyped program = let new_p = transform_closures_program p in let new_p = hoist_closures_program (Bindlib.unbox new_p) in (* FIXME: either fix the types of the marks, or remove the types annotations during the main processing (rather than requiring a new traversal) *) Program.untype (Bindlib.unbox new_p)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>