package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.9.0.tar.gz
md5=8f891209d18b6540df9c34b2d1a6a783
sha512=737770b87a057674bceefe77e8526720732552f51f424afcebcb6a628267eab522c4fd993caca1ae8ed7ace65a4a87e485af10c1676e51ca5939509a1b841ac2
doc/src/catala.scalc/from_lcalc.ml.html
Source file from_lcalc.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2021 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Catala_utils open Shared_ast module A = Ast module L = Lcalc.Ast module D = Dcalc.Ast type 'm ctxt = { func_dict : ('m L.expr, A.FuncName.t) Var.Map.t; decl_ctx : decl_ctx; var_dict : ('m L.expr, A.VarName.t) Var.Map.t; inside_definition_of : A.VarName.t option; context_name : string; } (* Expressions can spill out side effect, hence this function also returns a list of statements to be prepended before the expression is evaluated *) let rec translate_expr (ctxt : 'm ctxt) (expr : 'm L.expr) : A.block * A.expr = match Mark.remove expr with | EVar v -> let local_var = try A.EVar (Var.Map.find v ctxt.var_dict) with Var.Map.Not_found _ -> ( try A.EFunc (Var.Map.find v ctxt.func_dict) with Var.Map.Not_found _ -> Message.raise_spanned_error (Expr.pos expr) "Var not found in lambda→scalc: %a@\nknown: @[<hov>%a@]@\n" Print.var_debug v (Format.pp_print_list ~pp_sep:Format.pp_print_space (fun ppf v -> Print.var_debug ppf v)) (Var.Map.keys ctxt.var_dict)) in [], (local_var, Expr.pos expr) | EStruct { fields; name } -> let args_stmts, new_args = StructField.Map.fold (fun _ arg (args_stmts, new_args) -> let arg_stmts, new_arg = translate_expr ctxt arg in arg_stmts @ args_stmts, new_arg :: new_args) fields ([], []) in let new_args = List.rev new_args in let args_stmts = List.rev args_stmts in args_stmts, (A.EStruct (new_args, name), Expr.pos expr) | ETuple _ -> failwith "Tuples cannot be compiled to scalc" | EStructAccess { e = e1; field; name } -> let e1_stmts, new_e1 = translate_expr ctxt e1 in e1_stmts, (A.EStructFieldAccess (new_e1, field, name), Expr.pos expr) | ETupleAccess _ -> failwith "Non-struct tuples cannot be compiled to scalc" | EInj { e = e1; cons; name } -> let e1_stmts, new_e1 = translate_expr ctxt e1 in e1_stmts, (A.EInj (new_e1, cons, name), Expr.pos expr) | EApp { f; args; _ } -> let f_stmts, new_f = translate_expr ctxt f in let args_stmts, new_args = List.fold_left (fun (args_stmts, new_args) arg -> let arg_stmts, new_arg = translate_expr ctxt arg in arg_stmts @ args_stmts, new_arg :: new_args) ([], []) args in (* FIXME: what happens if [arg] is not a tuple but reduces to one ? *) let new_args = List.rev new_args in f_stmts @ args_stmts, (A.EApp (new_f, new_args), Expr.pos expr) | EAppOp { op; args; _ } -> let op = Operator.translate op in let args_stmts, new_args = List.fold_left (fun (args_stmts, new_args) arg -> let arg_stmts, new_arg = translate_expr ctxt arg in arg_stmts @ args_stmts, new_arg :: new_args) ([], []) args in let new_args = List.rev new_args in args_stmts, (A.EAppOp (op, new_args), Expr.pos expr) | EArray args -> let args_stmts, new_args = List.fold_left (fun (args_stmts, new_args) arg -> let arg_stmts, new_arg = translate_expr ctxt arg in arg_stmts @ args_stmts, new_arg :: new_args) ([], []) args in let new_args = List.rev new_args in args_stmts, (A.EArray new_args, Expr.pos expr) | ELit l -> [], (A.ELit l, Expr.pos expr) | _ -> let tmp_var = A.VarName.fresh ( (*This piece of logic is used to make the code more readable. TODO: should be removed when https://github.com/CatalaLang/catala/issues/240 is fixed. *) (match ctxt.inside_definition_of with | None -> ctxt.context_name | Some v -> let v = Mark.remove (A.VarName.get_info v) in let tmp_rex = Re.Pcre.regexp "^temp_" in if Re.Pcre.pmatch ~rex:tmp_rex v then v else "temp_" ^ v), Expr.pos expr ) in let ctxt = { ctxt with inside_definition_of = Some tmp_var; context_name = Mark.remove (A.VarName.get_info tmp_var); } in let tmp_stmts = translate_statements ctxt expr in ( ( A.SLocalDecl ((tmp_var, Expr.pos expr), (TAny, Expr.pos expr)), Expr.pos expr ) :: tmp_stmts, (A.EVar tmp_var, Expr.pos expr) ) and translate_statements (ctxt : 'm ctxt) (block_expr : 'm L.expr) : A.block = match Mark.remove block_expr with | EAssert e -> (* Assertions are always encapsulated in a unit-typed let binding *) let e_stmts, new_e = translate_expr ctxt e in e_stmts @ [A.SAssert (Mark.remove new_e), Expr.pos block_expr] | EApp { f = EAbs { binder; tys }, binder_mark; args; _ } -> (* This defines multiple local variables at the time *) let binder_pos = Expr.mark_pos binder_mark in let vars, body = Bindlib.unmbind binder in let vars_tau = List.map2 (fun x tau -> x, tau) (Array.to_list vars) tys in let ctxt = { ctxt with var_dict = List.fold_left (fun var_dict (x, _) -> Var.Map.add x (A.VarName.fresh (Bindlib.name_of x, binder_pos)) var_dict) ctxt.var_dict vars_tau; } in let local_decls = List.map (fun (x, tau) -> ( A.SLocalDecl ((Var.Map.find x ctxt.var_dict, binder_pos), tau), binder_pos )) vars_tau in let vars_args = List.map2 (fun (x, tau) arg -> (Var.Map.find x ctxt.var_dict, binder_pos), tau, arg) vars_tau args in let def_blocks = List.map (fun (x, _tau, arg) -> let ctxt = { ctxt with inside_definition_of = Some (Mark.remove x); context_name = Mark.remove (A.VarName.get_info (Mark.remove x)); } in let arg_stmts, new_arg = translate_expr ctxt arg in arg_stmts @ [A.SLocalDef (x, new_arg), binder_pos]) vars_args in let rest_of_block = translate_statements ctxt body in local_decls @ List.flatten def_blocks @ rest_of_block | EAbs { binder; tys } -> let vars, body = Bindlib.unmbind binder in let binder_pos = Expr.pos block_expr in let vars_tau = List.map2 (fun x tau -> x, tau) (Array.to_list vars) tys in let closure_name = match ctxt.inside_definition_of with | None -> A.VarName.fresh (ctxt.context_name, Expr.pos block_expr) | Some x -> x in let ctxt = { ctxt with var_dict = List.fold_left (fun var_dict (x, _) -> Var.Map.add x (A.VarName.fresh (Bindlib.name_of x, binder_pos)) var_dict) ctxt.var_dict vars_tau; inside_definition_of = None; } in let new_body = translate_statements ctxt body in [ ( A.SInnerFuncDef ( (closure_name, binder_pos), { func_params = List.map (fun (var, tau) -> (Var.Map.find var ctxt.var_dict, binder_pos), tau) vars_tau; func_body = new_body; } ), binder_pos ); ] | EMatch { e = e1; cases; name } -> let e1_stmts, new_e1 = translate_expr ctxt e1 in let new_cases = EnumConstructor.Map.fold (fun _ arg new_args -> match Mark.remove arg with | EAbs { binder; _ } -> let vars, body = Bindlib.unmbind binder in assert (Array.length vars = 1); let var = vars.(0) in let scalc_var = A.VarName.fresh (Bindlib.name_of var, Expr.pos arg) in let ctxt = { ctxt with var_dict = Var.Map.add var scalc_var ctxt.var_dict } in let new_arg = translate_statements ctxt body in (new_arg, scalc_var) :: new_args | _ -> assert false (* should not happen *)) cases [] in let new_args = List.rev new_cases in e1_stmts @ [A.SSwitch (new_e1, name, new_args), Expr.pos block_expr] | EIfThenElse { cond; etrue; efalse } -> let cond_stmts, s_cond = translate_expr ctxt cond in let s_e_true = translate_statements ctxt etrue in let s_e_false = translate_statements ctxt efalse in cond_stmts @ [A.SIfThenElse (s_cond, s_e_true, s_e_false), Expr.pos block_expr] | ECatch { body; exn; handler } -> let s_e_try = translate_statements ctxt body in let s_e_catch = translate_statements ctxt handler in [A.STryExcept (s_e_try, exn, s_e_catch), Expr.pos block_expr] | ERaise except -> (* Before raising the exception, we still give a dummy definition to the current variable so that tools like mypy don't complain. *) (match ctxt.inside_definition_of with | None -> [] | Some x -> [ ( A.SLocalDef ( (x, Expr.pos block_expr), (Ast.EVar Ast.dead_value, Expr.pos block_expr) ), Expr.pos block_expr ); ]) @ [A.SRaise except, Expr.pos block_expr] | _ -> ( let e_stmts, new_e = translate_expr ctxt block_expr in e_stmts @ match e_stmts with | (A.SRaise _, _) :: _ -> (* if the last statement raises an exception, then we don't need to return or to define the current variable since this code will be unreachable *) [] | _ -> [ ( (match ctxt.inside_definition_of with | None -> A.SReturn (Mark.remove new_e) | Some x -> A.SLocalDef (Mark.copy new_e x, new_e)), Expr.pos block_expr ); ]) let rec translate_scope_body_expr (scope_name : ScopeName.t) (decl_ctx : decl_ctx) (var_dict : ('m L.expr, A.VarName.t) Var.Map.t) (func_dict : ('m L.expr, A.FuncName.t) Var.Map.t) (scope_expr : 'm L.expr scope_body_expr) : A.block = match scope_expr with | Result e -> let block, new_e = translate_expr { decl_ctx; func_dict; var_dict; inside_definition_of = None; context_name = Mark.remove (ScopeName.get_info scope_name); } e in block @ [A.SReturn (Mark.remove new_e), Mark.get new_e] | ScopeLet scope_let -> let let_var, scope_let_next = Bindlib.unbind scope_let.scope_let_next in let let_var_id = A.VarName.fresh (Bindlib.name_of let_var, scope_let.scope_let_pos) in let new_var_dict = Var.Map.add let_var let_var_id var_dict in (match scope_let.scope_let_kind with | Assertion -> translate_statements { decl_ctx; func_dict; var_dict; inside_definition_of = Some let_var_id; context_name = Mark.remove (ScopeName.get_info scope_name); } scope_let.scope_let_expr | _ -> let let_expr_stmts, new_let_expr = translate_expr { decl_ctx; func_dict; var_dict; inside_definition_of = Some let_var_id; context_name = Mark.remove (ScopeName.get_info scope_name); } scope_let.scope_let_expr in let_expr_stmts @ [ ( A.SLocalDecl ((let_var_id, scope_let.scope_let_pos), scope_let.scope_let_typ), scope_let.scope_let_pos ); ( A.SLocalDef ((let_var_id, scope_let.scope_let_pos), new_let_expr), scope_let.scope_let_pos ); ]) @ translate_scope_body_expr scope_name decl_ctx new_var_dict func_dict scope_let_next let translate_program (p : 'm L.program) : A.program = let _, _, rev_items = Scope.fold_left ~f:(fun (func_dict, var_dict, rev_items) code_item var -> match code_item with | ScopeDef (name, body) -> let scope_input_var, scope_body_expr = Bindlib.unbind body.scope_body_expr in let input_pos = Mark.get (ScopeName.get_info name) in let scope_input_var_id = A.VarName.fresh (Bindlib.name_of scope_input_var, input_pos) in let var_dict_local = Var.Map.add scope_input_var scope_input_var_id var_dict in let new_scope_body = translate_scope_body_expr name p.decl_ctx var_dict_local func_dict scope_body_expr in let func_id = A.FuncName.fresh (Bindlib.name_of var, Pos.no_pos) in ( Var.Map.add var func_id func_dict, var_dict, A.SScope { Ast.scope_body_name = name; Ast.scope_body_var = func_id; scope_body_func = { A.func_params = [ ( (scope_input_var_id, input_pos), (TStruct body.scope_body_input_struct, input_pos) ); ]; A.func_body = new_scope_body; }; } :: rev_items ) | Topdef (name, _, (EAbs abs, _)) -> (* Toplevel function def *) let func_id = A.FuncName.fresh (Bindlib.name_of var, Pos.no_pos) in let args_a, expr = Bindlib.unmbind abs.binder in let args = Array.to_list args_a in let args_id = List.map2 (fun v ty -> let pos = Mark.get ty in (A.VarName.fresh (Bindlib.name_of v, pos), pos), ty) args abs.tys in let block, expr = let ctxt = { func_dict; decl_ctx = p.decl_ctx; var_dict = List.fold_left2 (fun map arg ((id, _), _) -> Var.Map.add arg id map) var_dict args args_id; inside_definition_of = None; context_name = Mark.remove (TopdefName.get_info name); } in translate_expr ctxt expr in let body_block = block @ [A.SReturn (Mark.remove expr), Mark.get expr] in ( Var.Map.add var func_id func_dict, var_dict, A.SFunc { var = func_id; func = { A.func_params = args_id; A.func_body = body_block }; } :: rev_items ) | Topdef (name, _ty, expr) -> (* Toplevel constant def *) let var_id = A.VarName.fresh (Bindlib.name_of var, Pos.no_pos) in let block, expr = let ctxt = { func_dict; decl_ctx = p.decl_ctx; var_dict; inside_definition_of = None; context_name = Mark.remove (TopdefName.get_info name); } in translate_expr ctxt expr in (* If the evaluation of the toplevel expr requires preliminary statements, we lift its computation into an auxiliary function *) let rev_items = match block with | [] -> A.SVar { var = var_id; expr } :: rev_items | block -> let pos = Mark.get expr in let func_id = A.FuncName.fresh (Bindlib.name_of var ^ "_aux", pos) in (* The list is being built in reverse order *) A.SVar { var = var_id; expr = A.EApp ((EFunc func_id, pos), []), pos } :: A.SFunc { var = func_id; func = { A.func_params = []; A.func_body = block @ [A.SReturn (Mark.remove expr), Mark.get expr]; }; } :: rev_items in ( func_dict, (* No need to add func_id since the function will only be called right here *) Var.Map.add var var_id var_dict, rev_items )) ~init:(Var.Map.empty, Var.Map.empty, []) p.code_items in { decl_ctx = p.decl_ctx; code_items = List.rev rev_items }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>