package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.9.0.tar.gz
md5=8f891209d18b6540df9c34b2d1a6a783
sha512=737770b87a057674bceefe77e8526720732552f51f424afcebcb6a628267eab522c4fd993caca1ae8ed7ace65a4a87e485af10c1676e51ca5939509a1b841ac2
doc/src/catala.lcalc/compile_without_exceptions.ml.html
Source file compile_without_exceptions.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Alain Delaët-Tixeuil <alain.delaet--tixeuil@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Catala_utils open Shared_ast module D = Dcalc.Ast module A = Ast (** We make use of the strong invriants on the structure of programs: Defaultable values can only appear in certin positions. This information is given by the type structure of expressions. In particular this mean we don't need to use the monadic bind while computing arithmetic opertions or function calls. The resulting function is not more difficult than what we had when translating without exceptions. The typing translation is to simply trnsform defult type into option types. *) let rec translate_typ (tau : typ) : typ = Mark.copy tau begin match Mark.remove tau with | TDefault t -> TOption (translate_typ t) | TLit l -> TLit l | TTuple ts -> TTuple (List.map translate_typ ts) | TStruct s -> TStruct s | TEnum en -> TEnum en | TOption _ -> Message.raise_internal_error "The types option should not appear before the dcalc -> lcalc \ translation step." | TClosureEnv -> Message.raise_internal_error "The types closure_env should not appear before the dcalc -> lcalc \ translation step." | TAny -> TAny | TArray ts -> TArray (translate_typ ts) | TArrow (t1, t2) -> TArrow (List.map translate_typ t1, translate_typ t2) end let rec translate_default (exceptions : 'm D.expr list) (just : 'm D.expr) (cons : 'm D.expr) (mark_default : 'm mark) : 'm A.expr boxed = (* Since the program is well typed, all exceptions have as type [option 't] *) let exceptions = List.map translate_expr exceptions in let pos = Expr.mark_pos mark_default in let exceptions = Expr.eappop ~op:Op.HandleDefaultOpt ~tys:[TAny, pos; TAny, pos; TAny, pos] ~args: [ Expr.earray exceptions mark_default; (* In call-by-value programming languages, as lcalc, arguments are evalulated before calling the function. Since we don't want to execute the justification and conclusion while before checking every exceptions, we need to thunk them. *) Expr.thunk_term (translate_expr just) (Mark.get just); Expr.thunk_term (translate_expr cons) (Mark.get cons); ] mark_default in exceptions and translate_expr (e : 'm D.expr) : 'm A.expr boxed = let mark = Mark.get e in match Mark.remove e with | EEmptyError -> Expr.einj ~e:(Expr.elit LUnit mark) ~cons:Expr.none_constr ~name:Expr.option_enum mark | EErrorOnEmpty arg -> let cases = EnumConstructor.Map.of_list [ ( Expr.none_constr, let x = Var.make "_" in Expr.eabs (Expr.bind [| x |] (Expr.eraise NoValueProvided mark)) [TAny, Expr.mark_pos mark] mark ); (* | None x -> raise NoValueProvided *) Expr.some_constr, Expr.fun_id ~var_name:"arg" mark (* | Some x -> x*); ] in Expr.ematch ~e:(translate_expr arg) ~name:Expr.option_enum ~cases mark | EDefault { excepts; just; cons } -> translate_default excepts just cons (Mark.get e) | EPureDefault e -> Expr.einj ~e:(translate_expr e) ~cons:Expr.some_constr ~name:Expr.option_enum mark (* As we need to translate types as well as terms, we cannot simply use [Expr.map] for terms that contains types. *) | EAppOp { op; tys; args } -> Expr.eappop ~op:(Operator.translate op) ~tys:(List.map translate_typ tys) ~args:(List.map translate_expr args) mark | EAbs { binder; tys } -> let vars, body = Bindlib.unmbind binder in let body = translate_expr body in let binder = Expr.bind (Array.map Var.translate vars) body in let tys = List.map translate_typ tys in Expr.eabs binder tys mark | ( ELit _ | EApp _ | EArray _ | EVar _ | EExternal _ | EIfThenElse _ | ETuple _ | ETupleAccess _ | EInj _ | EAssert _ | EStruct _ | EStructAccess _ | EMatch _ ) as e -> Expr.map ~f:translate_expr (Mark.add mark e) | _ -> . let translate_scope_body_expr (scope_body_expr : 'expr1 scope_body_expr) : 'expr2 scope_body_expr Bindlib.box = Scope.fold_right_lets ~f:(fun scope_let var_next acc -> Bindlib.box_apply2 (fun scope_let_next scope_let_expr -> ScopeLet { scope_let with scope_let_next; scope_let_expr; scope_let_typ = translate_typ scope_let.scope_let_typ; }) (Bindlib.bind_var (Var.translate var_next) acc) (Expr.Box.lift (translate_expr scope_let.scope_let_expr))) ~init:(fun res -> Bindlib.box_apply (fun res -> Result res) (Expr.Box.lift (translate_expr res))) scope_body_expr let translate_code_items scopes = let f = function | ScopeDef (name, body) -> let scope_input_var, scope_lets = Bindlib.unbind body.scope_body_expr in let new_body_expr = translate_scope_body_expr scope_lets in let new_body_expr = Bindlib.bind_var (Var.translate scope_input_var) new_body_expr in Bindlib.box_apply (fun scope_body_expr -> ScopeDef (name, { body with scope_body_expr })) new_body_expr | Topdef (name, typ, expr) -> Bindlib.box_apply (fun e -> Topdef (name, typ, e)) (Expr.Box.lift (translate_expr expr)) in Scope.map ~f ~varf:Var.translate scopes let translate_program (prg : typed D.program) : untyped A.program = Program.untype @@ Bindlib.unbox @@ Bindlib.box_apply (fun code_items -> let ctx_enums = EnumName.Map.map (EnumConstructor.Map.map translate_typ) prg.decl_ctx.ctx_enums in let ctx_structs = StructName.Map.map (StructField.Map.map translate_typ) prg.decl_ctx.ctx_structs in { prg with code_items; decl_ctx = { prg.decl_ctx with ctx_enums; ctx_structs }; }) (translate_code_items prg.code_items)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>