package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.9.0.tar.gz
md5=8f891209d18b6540df9c34b2d1a6a783
sha512=737770b87a057674bceefe77e8526720732552f51f424afcebcb6a628267eab522c4fd993caca1ae8ed7ace65a4a87e485af10c1676e51ca5939509a1b841ac2
doc/src/catala.desugared/from_surface.ml.html
Source file from_surface.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Nicolas Chataing <nicolas.chataing@ens.fr> Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Catala_utils module S = Surface.Ast module SurfacePrint = Surface.Print open Shared_ast module Runtime = Runtime_ocaml.Runtime (** Translation from {!module: Surface.Ast} to {!module: Desugaring.Ast}. - Removes syntactic sugars - Separate code from legislation *) (** {1 Translating expressions} *) (* Resolves the operator kinds into the expected operator operand types. This gives only partial typing information, in the case it is enforced using the operator suffixes for explicit typing. See {!modules: Shared_ast.Operator} for detail. *) let translate_binop : S.binop Mark.pos -> Pos.t -> Ast.expr boxed -> Ast.expr boxed -> Ast.expr boxed = fun (op, op_pos) pos lhs rhs -> let op_expr op tys = Expr.eappop ~op ~tys:(List.map (Mark.add op_pos) tys) ~args:[lhs; rhs] (Untyped { pos }) in match op with | S.And -> op_expr And [TLit TBool; TLit TBool] | S.Or -> op_expr Or [TLit TBool; TLit TBool] | S.Xor -> op_expr Xor [TLit TBool; TLit TBool] | S.Add k -> op_expr Add (match k with | S.KPoly -> [TAny; TAny] | S.KInt -> [TLit TInt; TLit TInt] | S.KDec -> [TLit TRat; TLit TRat] | S.KMoney -> [TLit TMoney; TLit TMoney] | S.KDate -> [TLit TDate; TLit TDuration] | S.KDuration -> [TLit TDuration; TLit TDuration]) | S.Sub k -> op_expr Sub (match k with | S.KPoly -> [TAny; TAny] | S.KInt -> [TLit TInt; TLit TInt] | S.KDec -> [TLit TRat; TLit TRat] | S.KMoney -> [TLit TMoney; TLit TMoney] | S.KDate -> [TLit TDate; TLit TDate] | S.KDuration -> [TLit TDuration; TLit TDuration]) | S.Mult k -> op_expr Mult (match k with | S.KPoly -> [TAny; TAny] | S.KInt -> [TLit TInt; TLit TInt] | S.KDec -> [TLit TRat; TLit TRat] | S.KMoney -> [TLit TMoney; TLit TRat] | S.KDate -> Message.raise_spanned_error op_pos "This operator doesn't exist, dates can't be multiplied" | S.KDuration -> [TLit TDuration; TLit TInt]) | S.Div k -> op_expr Div (match k with | S.KPoly -> [TAny; TAny] | S.KInt -> [TLit TInt; TLit TInt] | S.KDec -> [TLit TRat; TLit TRat] | S.KMoney -> [TLit TMoney; TLit TMoney] | S.KDate -> Message.raise_spanned_error op_pos "This operator doesn't exist, dates can't be divided" | S.KDuration -> [TLit TDuration; TLit TDuration]) | S.Lt k | S.Lte k | S.Gt k | S.Gte k -> op_expr (match op with | S.Lt _ -> Lt | S.Lte _ -> Lte | S.Gt _ -> Gt | S.Gte _ -> Gte | _ -> assert false) (match k with | S.KPoly -> [TAny; TAny] | S.KInt -> [TLit TInt; TLit TInt] | S.KDec -> [TLit TRat; TLit TRat] | S.KMoney -> [TLit TMoney; TLit TMoney] | S.KDate -> [TLit TDate; TLit TDate] | S.KDuration -> [TLit TDuration; TLit TDuration]) | S.Eq -> op_expr Eq [TAny; TAny] (* This is a truly polymorphic operator, not an overload *) | S.Neq -> assert false (* desugared already *) | S.Concat -> op_expr Concat [TArray (TAny, op_pos); TArray (TAny, op_pos)] let translate_unop ((op, op_pos) : S.unop Mark.pos) pos arg : Ast.expr boxed = let op_expr op ty = Expr.eappop ~op ~tys:[Mark.add op_pos ty] ~args:[arg] (Untyped { pos }) in match op with | S.Not -> op_expr Not (TLit TBool) | S.Minus k -> op_expr Minus (match k with | S.KPoly -> TAny | S.KInt -> TLit TInt | S.KDec -> TLit TRat | S.KMoney -> TLit TMoney | S.KDate -> Message.raise_spanned_error op_pos "This operator doesn't exist, dates can't be negative" | S.KDuration -> TLit TDuration) let raise_error_cons_not_found (ctxt : Name_resolution.context) (constructor : string Mark.pos) = let constructors = Ident.Map.keys ctxt.local.constructor_idmap in let closest_constructors = Suggestions.suggestion_minimum_levenshtein_distance_association constructors (Mark.remove constructor) in Message.raise_spanned_error ~span_msg:(fun ppf -> Format.fprintf ppf "Here is your code :") ~suggestion:closest_constructors (Mark.get constructor) "The name of this constructor has not been defined before@ (it's probably \ a typographical error)." let rec disambiguate_constructor (ctxt : Name_resolution.context) (constructor0 : (S.path * S.uident Mark.pos) Mark.pos list) (pos : Pos.t) : EnumName.t * EnumConstructor.t = let path, constructor = match constructor0 with | [c] -> Mark.remove c | _ -> Message.raise_spanned_error pos "The deep pattern matching syntactic sugar is not yet supported" in let possible_c_uids = try Ident.Map.find (Mark.remove constructor) ctxt.local.constructor_idmap with Ident.Map.Not_found _ -> raise_error_cons_not_found ctxt constructor in match path with | [] -> if EnumName.Map.cardinal possible_c_uids > 1 then Message.raise_spanned_error (Mark.get constructor) "This constructor name is ambiguous, it can belong to %a. Disambiguate \ it by prefixing it with the enum name." (EnumName.Map.format_keys ~pp_sep:(fun fmt () -> Format.pp_print_string fmt " or ")) possible_c_uids; EnumName.Map.choose possible_c_uids | [enum] -> ( (* The path is fully qualified *) let e_uid = Name_resolution.get_enum ctxt enum in try let c_uid = EnumName.Map.find e_uid possible_c_uids in e_uid, c_uid with EnumName.Map.Not_found _ -> Message.raise_spanned_error pos "Enum %s does not contain case %s" (Mark.remove enum) (Mark.remove constructor)) | mod_id :: path -> let constructor = List.map (Mark.map (fun (_, c) -> path, c)) constructor0 in disambiguate_constructor (Name_resolution.get_module_ctx ctxt mod_id) constructor pos let int100 = Runtime.integer_of_int 100 let rat100 = Runtime.decimal_of_integer int100 (** The parser allows any combination of logical operators with right associativity. We actually want to reject anything that mixes operators without parens, so that is handled here. *) let rec check_formula (op, pos_op) e = match Mark.remove e with | S.Binop ((((S.And | S.Or | S.Xor) as op1), pos_op1), e1, e2) -> if op = S.Xor || op <> op1 then (* Xor is mathematically associative, but without a useful semantics ([a xor b xor c] is most likely an error since it's true for [a = b = c = true]) *) Message.raise_multispanned_error [None, pos_op; None, pos_op1] "Please add parentheses to explicit which of these operators should be \ applied first"; check_formula (op1, pos_op1) e1; check_formula (op1, pos_op1) e2 | _ -> () (** Usage: [translate_expr scope ctxt naked_expr] Translates [expr] into its desugared equivalent. [scope] is used to disambiguate the scope and subscopes variables than occur in the expression, [None] is assumed to mean a toplevel definition *) let rec translate_expr (scope : ScopeName.t option) (inside_definition_of : Ast.ScopeDef.t Mark.pos option) (ctxt : Name_resolution.context) (local_vars : Ast.expr Var.t Ident.Map.t) (expr : S.expression) : Ast.expr boxed = let scope_vars = match scope with | None -> Ident.Map.empty | Some s -> (ScopeName.Map.find s ctxt.scopes).var_idmap in let rec_helper ?(local_vars = local_vars) e = translate_expr scope inside_definition_of ctxt local_vars e in let pos = Mark.get expr in let emark = Untyped { pos } in match Mark.remove expr with | Paren e -> rec_helper e | Binop ( (S.And, _pos_op), ( TestMatchCase (e1_sub, ((constructors, Some binding), pos_pattern)), _pos_e1 ), e2 ) -> (* This sugar corresponds to [e is P x && e'] and should desugar to [match e with P x -> e' | _ -> false] *) let enum_uid, c_uid = disambiguate_constructor ctxt constructors pos_pattern in let cases = EnumConstructor.Map.mapi (fun c_uid' tau -> if EnumConstructor.compare c_uid c_uid' <> 0 then let nop_var = Var.make "_" in Expr.make_abs [| nop_var |] (Expr.elit (LBool false) emark) [tau] pos else let binding_var = Var.make (Mark.remove binding) in let local_vars = Ident.Map.add (Mark.remove binding) binding_var local_vars in let e2 = rec_helper ~local_vars e2 in Expr.make_abs [| binding_var |] e2 [tau] pos) (EnumName.Map.find enum_uid ctxt.enums) in Expr.ematch ~e:(rec_helper e1_sub) ~name:enum_uid ~cases emark | Binop ((((S.And | S.Or | S.Xor), _) as op), e1, e2) -> check_formula op e1; check_formula op e2; translate_binop op pos (rec_helper e1) (rec_helper e2) | IfThenElse (e_if, e_then, e_else) -> Expr.eifthenelse (rec_helper e_if) (rec_helper e_then) (rec_helper e_else) emark | Binop ((S.Neq, posn), e1, e2) -> (* Neq is just sugar *) rec_helper (Unop ((S.Not, posn), (Binop ((S.Eq, posn), e1, e2), posn)), pos) | Binop (op, e1, e2) -> translate_binop op pos (rec_helper e1) (rec_helper e2) | Unop (op, e) -> translate_unop op pos (rec_helper e) | Literal l -> let lit = match l with | LNumber ((Int i, _), None) -> LInt (Runtime.integer_of_string i) | LNumber ((Int i, _), Some (Percent, _)) -> LRat Runtime.(Oper.o_div_rat_rat (decimal_of_string i) rat100) | LNumber ((Dec (i, f), _), None) -> LRat Runtime.(decimal_of_string (i ^ "." ^ f)) | LNumber ((Dec (i, f), _), Some (Percent, _)) -> LRat Runtime.(Oper.o_div_rat_rat (decimal_of_string (i ^ "." ^ f)) rat100) | LBool b -> LBool b | LMoneyAmount i -> LMoney Runtime.( money_of_cents_integer (Oper.o_add_int_int (Oper.o_mult_int_int (integer_of_string i.money_amount_units) int100) (integer_of_string i.money_amount_cents))) | LNumber ((Int i, _), Some (Year, _)) -> LDuration (Runtime.duration_of_numbers (int_of_string i) 0 0) | LNumber ((Int i, _), Some (Month, _)) -> LDuration (Runtime.duration_of_numbers 0 (int_of_string i) 0) | LNumber ((Int i, _), Some (Day, _)) -> LDuration (Runtime.duration_of_numbers 0 0 (int_of_string i)) | LNumber ((Dec (_, _), _), Some ((Year | Month | Day), _)) -> Message.raise_spanned_error pos "Impossible to specify decimal amounts of days, months or years" | LDate date -> if date.literal_date_month > 12 then Message.raise_spanned_error pos "There is an error in this date: the month number is bigger than 12"; if date.literal_date_day > 31 then Message.raise_spanned_error pos "There is an error in this date: the day number is bigger than 31"; LDate (try Runtime.date_of_numbers date.literal_date_year date.literal_date_month date.literal_date_day with Runtime.ImpossibleDate -> Message.raise_spanned_error pos "There is an error in this date, it does not correspond to a \ correct calendar day") in Expr.elit lit emark | Ident ([], (x, pos)) -> ( (* first we check whether this is a local var, then we resort to scope-wide variables, then global variables *) match Ident.Map.find_opt x local_vars with | Some uid -> Expr.make_var uid emark (* the whole box thing is to accomodate for this case *) | None -> ( match Ident.Map.find_opt x scope_vars with | Some (ScopeVar uid) -> (* If the referenced variable has states, then here are the rules to desambiguate. In general, only the last state can be referenced. Except if defining a state of the same variable, then it references the previous state in the chain. *) let x_sig = ScopeVar.Map.find uid ctxt.var_typs in let x_state = match x_sig.var_sig_states_list with | [] -> None | states -> ( match inside_definition_of with | Some (Var (x'_uid, sx'), _) when ScopeVar.compare uid x'_uid = 0 -> ( match sx' with | None -> failwith "inconsistent state: inside a definition of a variable with \ no state but variable has states" | Some inside_def_state -> if StateName.compare inside_def_state (List.hd states) = 0 then Message.raise_spanned_error pos "It is impossible to refer to the variable you are \ defining when defining its first state." else (* Tricky: we have to retrieve in the list the previous state with respect to the state that we are defining. *) let rec find_prev_state = function | [] -> None | st0 :: st1 :: _ when StateName.equal inside_def_state st1 -> Some st0 | _ :: states -> find_prev_state states in find_prev_state states) | _ -> (* we take the last state in the chain *) Some (List.hd (List.rev states))) in Expr.elocation (DesugaredScopeVar { name = uid, pos; state = x_state }) emark | Some (SubScope _) (* Note: allowing access to a global variable with the same name as a subscope is disputable, but I see no good reason to forbid it either *) | None -> ( match Ident.Map.find_opt x ctxt.local.topdefs with | Some v -> Expr.elocation (ToplevelVar { name = v, Mark.get (TopdefName.get_info v) }) emark | None -> Name_resolution.raise_unknown_identifier "for a local, scope-wide or global variable" (x, pos)))) | Ident (path, name) -> ( let ctxt = Name_resolution.module_ctx ctxt path in match Ident.Map.find_opt (Mark.remove name) ctxt.local.topdefs with | Some v -> Expr.elocation (ToplevelVar { name = v, Mark.get (TopdefName.get_info v) }) emark | None -> Name_resolution.raise_unknown_identifier "for an external variable" name) | Dotted (e, ((path, x), _ppos)) -> ( match path, Mark.remove e with | [], Ident ([], (y, _)) when Option.fold scope ~none:false ~some:(fun s -> Name_resolution.is_subscope_uid s ctxt y) -> (* In this case, y.x is a subscope variable *) let subscope_uid, subscope_real_uid = match Ident.Map.find y scope_vars with | SubScope (sub, sc) -> sub, sc | ScopeVar _ -> assert false in let subscope_var_uid = Name_resolution.get_var_uid subscope_real_uid ctxt x in Expr.elocation (SubScopeVar { scope = subscope_real_uid; alias = subscope_uid, pos; var = subscope_var_uid, pos; }) emark | _ -> (* In this case e.x is the struct field x access of expression e *) let e = rec_helper e in let rec get_str ctxt = function | [] -> None | [c] -> Some (Name_resolution.get_struct ctxt c) | mod_id :: path -> get_str (Name_resolution.get_module_ctx ctxt mod_id) path in Expr.edstructaccess ~e ~field:(Mark.remove x) ~name_opt:(get_str ctxt path) emark) | FunCall ((Builtin b, _), [arg]) -> let op, ty = match b with | S.ToDecimal -> Op.ToRat, TAny | S.ToMoney -> Op.ToMoney, TAny | S.Round -> Op.Round, TAny | S.Cardinal -> Op.Length, TArray (TAny, pos) | S.GetDay -> Op.GetDay, TLit TDate | S.GetMonth -> Op.GetMonth, TLit TDate | S.GetYear -> Op.GetYear, TLit TDate | S.FirstDayOfMonth -> Op.FirstDayOfMonth, TLit TDate | S.LastDayOfMonth -> Op.LastDayOfMonth, TLit TDate in Expr.eappop ~op ~tys:[ty, pos] ~args:[rec_helper arg] emark | S.Builtin _ -> Message.raise_spanned_error pos "Invalid use of built-in: needs one operand" | FunCall (f, args) -> let args = List.map rec_helper args in Expr.eapp ~f:(rec_helper f) ~args ~tys:[] emark | ScopeCall (((path, id), _), fields) -> if scope = None then Message.raise_spanned_error pos "Scope calls are not allowed outside of a scope"; let called_scope, scope_def = let ctxt = Name_resolution.module_ctx ctxt path in let uid = Name_resolution.get_scope ctxt id in uid, ScopeName.Map.find uid ctxt.scopes in let in_struct = List.fold_left (fun acc (fld_id, e) -> let var = match Ident.Map.find_opt (Mark.remove fld_id) scope_def.var_idmap with | Some (ScopeVar v) -> v | Some (SubScope _) | None -> Message.raise_multispanned_error ~suggestion:(Ident.Map.keys scope_def.var_idmap) [ None, Mark.get fld_id; ( Some (Format.asprintf "Scope %a declared here" ScopeName.format called_scope), Mark.get (ScopeName.get_info called_scope) ); ] "Scope %a has no input variable %a" ScopeName.format called_scope Print.lit_style (Mark.remove fld_id) in ScopeVar.Map.update var (function | None -> Some (rec_helper e) | Some _ -> Message.raise_spanned_error (Mark.get fld_id) "Duplicate definition of scope input variable '%a'" ScopeVar.format var) acc) ScopeVar.Map.empty fields in Expr.escopecall ~scope:called_scope ~args:in_struct emark | LetIn (xs, e1, e2) -> let vs = List.map (fun x -> Var.make (Mark.remove x)) xs in let local_vars = List.fold_left2 (fun local_vars x v -> Ident.Map.add (Mark.remove x) v local_vars) local_vars xs vs in let taus = List.map (fun x -> TAny, Mark.get x) xs in (* This type will be resolved in Scopelang.Desambiguation *) let f = Expr.make_abs (Array.of_list vs) (rec_helper ~local_vars e2) taus pos in Expr.eapp ~f ~args:[rec_helper e1] ~tys:[] emark | StructLit (((path, s_name), _), fields) -> let ctxt = Name_resolution.module_ctx ctxt path in let s_uid = match Ident.Map.find_opt (Mark.remove s_name) ctxt.local.typedefs with | Some (Name_resolution.TStruct s_uid) | Some (Name_resolution.TScope (_, { out_struct_name = s_uid; _ })) -> s_uid | _ -> Message.raise_spanned_error (Mark.get s_name) "This identifier should refer to a struct name" in let s_fields = List.fold_left (fun s_fields (f_name, f_e) -> let f_uid = try StructName.Map.find s_uid (Ident.Map.find (Mark.remove f_name) ctxt.local.field_idmap) with StructName.Map.Not_found _ | Ident.Map.Not_found _ -> Message.raise_spanned_error (Mark.get f_name) "This identifier should refer to a field of struct %s" (Mark.remove s_name) in (match StructField.Map.find_opt f_uid s_fields with | None -> () | Some e_field -> Message.raise_multispanned_error [None, Mark.get f_e; None, Expr.pos e_field] "The field %a has been defined twice:" StructField.format f_uid); let f_e = rec_helper f_e in StructField.Map.add f_uid f_e s_fields) StructField.Map.empty fields in let expected_s_fields = StructName.Map.find s_uid ctxt.structs in if StructField.Map.exists (fun expected_f _ -> not (StructField.Map.mem expected_f s_fields)) expected_s_fields then Message.raise_spanned_error pos "Missing field(s) for structure %a:@\n%a" StructName.format s_uid (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt ",@ ") (fun fmt (expected_f, _) -> Format.fprintf fmt "\"%a\"" StructField.format expected_f)) (StructField.Map.bindings (StructField.Map.filter (fun expected_f _ -> not (StructField.Map.mem expected_f s_fields)) expected_s_fields)); Expr.estruct ~name:s_uid ~fields:s_fields emark | EnumInject (((path, (constructor, pos_constructor)), _), payload) -> ( let get_possible_c_uids ctxt = try Ident.Map.find constructor ctxt.Name_resolution.local.constructor_idmap with Ident.Map.Not_found _ -> raise_error_cons_not_found ctxt (constructor, pos_constructor) in let mark_constructor = Untyped { pos = pos_constructor } in match path with | [] -> let possible_c_uids = get_possible_c_uids ctxt in if (* No enum name was specified *) EnumName.Map.cardinal possible_c_uids > 1 then Message.raise_spanned_error pos_constructor "This constructor name is ambiguous, it can belong to %a. \ Desambiguate it by prefixing it with the enum name." (EnumName.Map.format_keys ~pp_sep:(fun fmt () -> Format.fprintf fmt " or ")) possible_c_uids else let e_uid, c_uid = EnumName.Map.choose possible_c_uids in let payload = Option.map rec_helper payload in Expr.einj ~e: (match payload with | Some e' -> e' | None -> Expr.elit LUnit mark_constructor) ~cons:c_uid ~name:e_uid emark | path_enum -> ( let path, enum = match List.rev path_enum with | enum :: rpath -> List.rev rpath, enum | _ -> assert false in let ctxt = Name_resolution.module_ctx ctxt path in let possible_c_uids = get_possible_c_uids ctxt in (* The path has been qualified *) let e_uid = Name_resolution.get_enum ctxt enum in try let c_uid = EnumName.Map.find e_uid possible_c_uids in let payload = Option.map rec_helper payload in Expr.einj ~e: (match payload with | Some e' -> e' | None -> Expr.elit LUnit mark_constructor) ~cons:c_uid ~name:e_uid emark with EnumName.Map.Not_found _ -> Message.raise_spanned_error pos "Enum %s does not contain case %s" (Mark.remove enum) constructor)) | MatchWith (e1, (cases, _cases_pos)) -> let e1 = rec_helper e1 in let cases_d, e_uid = disambiguate_match_and_build_expression scope inside_definition_of ctxt local_vars cases in Expr.ematch ~e:e1 ~name:e_uid ~cases:cases_d emark | TestMatchCase (e1, pattern) -> (match snd (Mark.remove pattern) with | None -> () | Some binding -> Message.emit_spanned_warning (Mark.get binding) "This binding will be ignored (remove it to suppress warning)"); let enum_uid, c_uid = disambiguate_constructor ctxt (fst (Mark.remove pattern)) (Mark.get pattern) in let cases = EnumConstructor.Map.mapi (fun c_uid' tau -> let nop_var = Var.make "_" in Expr.make_abs [| nop_var |] (Expr.elit (LBool (EnumConstructor.compare c_uid c_uid' = 0)) emark) [tau] pos) (EnumName.Map.find enum_uid ctxt.enums) in Expr.ematch ~e:(rec_helper e1) ~name:enum_uid ~cases emark | ArrayLit es -> Expr.earray (List.map rec_helper es) emark | Tuple es -> Expr.etuple (List.map rec_helper es) emark | CollectionOp (((S.Filter { f } | S.Map { f }) as op), collection) -> let collection = rec_helper collection in let param_name, predicate = f in let param = Var.make (Mark.remove param_name) in let local_vars = Ident.Map.add (Mark.remove param_name) param local_vars in let f_pred = Expr.make_abs [| param |] (rec_helper ~local_vars predicate) [TAny, pos] pos in Expr.eappop ~op: (match op with | S.Map _ -> Map | S.Filter _ -> Filter | _ -> assert false) ~tys:[TAny, pos; TAny, pos] ~args:[f_pred; collection] emark | CollectionOp ( S.AggregateArgExtremum { max; default; f = param_name, predicate }, collection ) -> let default = rec_helper default in let pos_dft = Expr.pos default in let collection = rec_helper collection in let param = Var.make (Mark.remove param_name) in let local_vars = Ident.Map.add (Mark.remove param_name) param local_vars in let cmp_op = if max then Op.Gt else Op.Lt in let f_pred = Expr.make_abs [| param |] (rec_helper ~local_vars predicate) [TAny, pos] pos in let param_name = Bindlib.name_of param in let v1, v2 = Var.make (param_name ^ "_1"), Var.make (param_name ^ "_2") in let x1 = Expr.make_var v1 emark in let x2 = Expr.make_var v2 emark in let reduce_f = (* fun x1 x2 -> cmp_op (pred x1) (pred x2) *) (* Note: this computes f_pred twice on every element, but we'd rather not rely on returning tuples here *) Expr.make_abs [| v1; v2 |] (Expr.eifthenelse (Expr.eappop ~op:cmp_op ~tys:[TAny, pos_dft; TAny, pos_dft] ~args: [ Expr.eapp ~f:f_pred ~args:[x1] ~tys:[] emark; Expr.eapp ~f:f_pred ~args:[x2] ~tys:[] emark; ] emark) x1 x2 emark) [TAny, pos; TAny, pos] pos in Expr.eappop ~op:Reduce ~tys:[TAny, pos; TAny, pos; TAny, pos] ~args:[reduce_f; default; collection] emark | CollectionOp (((Exists { predicate } | Forall { predicate }) as op), collection) -> let collection = rec_helper collection in let init, op = match op with | Exists _ -> false, S.Or | Forall _ -> true, S.And | _ -> assert false in let init = Expr.elit (LBool init) emark in let param0, predicate = predicate in let param = Var.make (Mark.remove param0) in let local_vars = Ident.Map.add (Mark.remove param0) param local_vars in let f = let acc_var = Var.make "acc" in let acc = Expr.make_var acc_var (Untyped { pos = Mark.get param0 }) in Expr.eabs (Expr.bind [| acc_var; param |] (translate_binop (op, pos) pos acc (rec_helper ~local_vars predicate))) [TAny, pos; TAny, pos] emark in Expr.eappop ~op:Fold ~tys:[TAny, pos; TAny, pos; TAny, pos] ~args:[f; init; collection] emark | CollectionOp (AggregateExtremum { max; default }, collection) -> let collection = rec_helper collection in let default = rec_helper default in let op = if max then S.Gt KPoly else S.Lt KPoly in let op_f = (* fun x1 x2 -> if op x1 x2 then x1 else x2 *) let vname = if max then "max" else "min" in let v1, v2 = Var.make (vname ^ "1"), Var.make (vname ^ "2") in let x1 = Expr.make_var v1 emark in let x2 = Expr.make_var v2 emark in Expr.make_abs [| v1; v2 |] (Expr.eifthenelse (translate_binop (op, pos) pos x1 x2) x1 x2 emark) [TAny, pos; TAny, pos] pos in Expr.eappop ~op:Reduce ~tys:[TAny, pos; TAny, pos; TAny, pos] ~args:[op_f; default; collection] emark | CollectionOp (AggregateSum { typ }, collection) -> let collection = rec_helper collection in let default_lit = let i0 = Runtime.integer_of_int 0 in match typ with | S.Integer -> LInt i0 | S.Decimal -> LRat (Runtime.decimal_of_integer i0) | S.Money -> LMoney (Runtime.money_of_cents_integer i0) | S.Duration -> LDuration (Runtime.duration_of_numbers 0 0 0) | t -> Message.raise_spanned_error pos "It is impossible to sum values of type %a together" SurfacePrint.format_primitive_typ t in let op_f = (* fun x1 x2 -> op x1 x2 *) (* we're not allowed pass the operator directly as argument, it must appear inside an [EApp] *) let v1, v2 = Var.make "sum1", Var.make "sum2" in let x1 = Expr.make_var v1 emark in let x2 = Expr.make_var v2 emark in Expr.make_abs [| v1; v2 |] (translate_binop (S.Add KPoly, pos) pos x1 x2) [TAny, pos; TAny, pos] pos in Expr.eappop ~op:Reduce ~tys:[TAny, pos; TAny, pos; TAny, pos] ~args:[op_f; Expr.elit default_lit emark; collection] emark | MemCollection (member, collection) -> let param_var = Var.make "collection_member" in let param = Expr.make_var param_var emark in let collection = rec_helper collection in let init = Expr.elit (LBool false) emark in let acc_var = Var.make "acc" in let acc = Expr.make_var acc_var emark in let f_body = let member = rec_helper member in Expr.eappop ~op:Or ~tys:[TLit TBool, pos; TLit TBool, pos] ~args: [ Expr.eappop ~op:Eq ~tys:[TAny, pos; TAny, pos] ~args:[member; param] emark; acc; ] emark in let f = Expr.eabs (Expr.bind [| acc_var; param_var |] f_body) [TLit TBool, pos; TAny, pos] emark in Expr.eappop ~op:Fold ~tys:[TAny, pos; TAny, pos; TAny, pos] ~args:[f; init; collection] emark and disambiguate_match_and_build_expression (scope : ScopeName.t option) (inside_definition_of : Ast.ScopeDef.t Mark.pos option) (ctxt : Name_resolution.context) (local_vars : Ast.expr Var.t Ident.Map.t) (cases : S.match_case Mark.pos list) : Ast.expr boxed EnumConstructor.Map.t * EnumName.t = let create_var local_vars = function | None -> local_vars, Var.make "_" | Some param -> let param_var = Var.make param in Ident.Map.add param param_var local_vars, param_var in let bind_case_body (c_uid : EnumConstructor.t) (e_uid : EnumName.t) (ctxt : Name_resolution.context) case_body e_binder = Expr.eabs e_binder [ EnumConstructor.Map.find c_uid (EnumName.Map.find e_uid ctxt.Name_resolution.enums); ] (Mark.get case_body) in let bind_match_cases (cases_d, e_uid, curr_index) (case, case_pos) = match case with | S.MatchCase case -> let constructor, binding = Mark.remove case.S.match_case_pattern in let e_uid', c_uid = disambiguate_constructor ctxt constructor (Mark.get case.S.match_case_pattern) in let e_uid = match e_uid with | None -> e_uid' | Some e_uid -> if e_uid = e_uid' then e_uid else Message.raise_spanned_error (Mark.get case.S.match_case_pattern) "This case matches a constructor of enumeration %a but previous \ case were matching constructors of enumeration %a" EnumName.format e_uid EnumName.format e_uid' in (match EnumConstructor.Map.find_opt c_uid cases_d with | None -> () | Some e_case -> Message.raise_multispanned_error [None, Mark.get case.match_case_expr; None, Expr.pos e_case] "The constructor %a has been matched twice:" EnumConstructor.format c_uid); let local_vars, param_var = create_var local_vars (Option.map Mark.remove binding) in let case_body = translate_expr scope inside_definition_of ctxt local_vars case.S.match_case_expr in let e_binder = Expr.bind [| param_var |] case_body in let case_expr = bind_case_body c_uid e_uid ctxt case_body e_binder in ( EnumConstructor.Map.add c_uid case_expr cases_d, Some e_uid, curr_index + 1 ) | S.WildCard match_case_expr -> ( let nb_cases = List.length cases in let raise_wildcard_not_last_case_err () = Message.raise_multispanned_error [ Some "Not ending wildcard:", case_pos; ( Some "Next reachable case:", curr_index + 1 |> List.nth cases |> Mark.get ); ] "Wildcard must be the last match case" in match e_uid with | None -> if 1 = nb_cases then Message.raise_spanned_error case_pos "Couldn't infer the enumeration name from lonely wildcard \ (wildcard cannot be used as single match case)" else raise_wildcard_not_last_case_err () | Some e_uid -> if curr_index < nb_cases - 1 then raise_wildcard_not_last_case_err (); let missing_constructors = EnumName.Map.find e_uid ctxt.Name_resolution.enums |> EnumConstructor.Map.filter_map (fun c_uid _ -> match EnumConstructor.Map.find_opt c_uid cases_d with | Some _ -> None | None -> Some c_uid) in if EnumConstructor.Map.is_empty missing_constructors then Message.emit_spanned_warning case_pos "Unreachable match case, all constructors of the enumeration %a \ are already specified" EnumName.format e_uid; (* The current used strategy is to replace the wildcard branch: match foo with | Case1 x -> x | _ -> 1 with: let wildcard_payload = 1 in match foo with | Case1 x -> x | Case2 -> wildcard_payload ... | CaseN -> wildcard_payload *) (* Creates the wildcard payload *) let local_vars, payload_var = create_var local_vars None in let case_body = translate_expr scope inside_definition_of ctxt local_vars match_case_expr in let e_binder = Expr.bind [| payload_var |] case_body in (* For each missing cases, binds the wildcard payload. *) EnumConstructor.Map.fold (fun c_uid _ (cases_d, e_uid_opt, curr_index) -> let case_expr = bind_case_body c_uid e_uid ctxt case_body e_binder in ( EnumConstructor.Map.add c_uid case_expr cases_d, e_uid_opt, curr_index + 1 )) missing_constructors (cases_d, Some e_uid, curr_index)) in let naked_expr, e_name, _ = List.fold_left bind_match_cases (EnumConstructor.Map.empty, None, 0) cases in naked_expr, Option.get e_name [@@ocamlformat "wrap-comments=false"] (** {1 Translating scope definitions} *) (** A scope use can be annotated with a pervasive precondition, in which case this precondition has to be appended to the justifications of each definition in the subscope use. This is what this function does. *) let merge_conditions (precond : Ast.expr boxed option) (cond : Ast.expr boxed option) (default_pos : Pos.t) : Ast.expr boxed = match precond, cond with | Some precond, Some cond -> Expr.eappop ~op:And ~tys:[TLit TBool, default_pos; TLit TBool, default_pos] ~args:[precond; cond] (Mark.get cond) | Some precond, None -> Mark.remove precond, Untyped { pos = default_pos } | None, Some cond -> cond | None, None -> Expr.elit (LBool true) (Untyped { pos = default_pos }) let rec arglist_eq_check pos_decl pos_def pdecl pdefs = match pdecl, pdefs with | [], [] -> () | [], (arg, apos) :: _ -> Message.raise_multispanned_error [Some "Declared here:", pos_decl; Some "Extra argument:", apos] "This definition has an extra, undeclared argument '%a'" Print.lit_style arg | (arg, apos) :: _, [] -> Message.raise_multispanned_error [ Some "Argument declared here:", apos; Some "Mismatching definition:", pos_def; ] "This definition is missing argument '%a'" Print.lit_style arg | decl :: pdecl, def :: pdefs when Uid.MarkedString.equal decl def -> arglist_eq_check pos_decl pos_def pdecl pdefs | (decl_arg, decl_apos) :: _, (def_arg, def_apos) :: _ -> Message.raise_multispanned_error [ Some "Argument declared here:", decl_apos; Some "Defined here:", def_apos; ] "Function argument name mismatch between declaration ('%a') and \ definition ('%a')" Print.lit_style decl_arg Print.lit_style def_arg let process_rule_parameters ctxt (def_key : Ast.ScopeDef.t Mark.pos) (def : S.definition) : Ast.expr Var.t Ident.Map.t * (Ast.expr Var.t Mark.pos * typ) list Mark.pos option = let decl_name, decl_pos = def_key in let declared_params = Name_resolution.get_params ctxt decl_name in match declared_params, def.S.definition_parameter with | None, None -> Ident.Map.empty, None | None, Some (_, pos) -> Message.raise_multispanned_error [ Some "Declared here without arguments", decl_pos; Some "Unexpected arguments appearing here", pos; ] "Extra arguments in this definition of %a" Ast.ScopeDef.format decl_name | Some (_, pos), None -> Message.raise_multispanned_error [ Some "Arguments declared here", pos; Some "Definition missing the arguments", Mark.get def.S.definition_name; ] "This definition for %a is missing the arguments" Ast.ScopeDef.format decl_name | Some (pdecl, pos_decl), Some (pdefs, pos_def) -> arglist_eq_check pos_decl pos_def (List.map fst pdecl) pdefs; let local_vars, params = List.fold_left_map (fun local_vars ((lbl, pos), ty) -> let v = Var.make lbl in let local_vars = Ident.Map.add lbl v local_vars in local_vars, ((v, pos), ty)) Ident.Map.empty pdecl in local_vars, Some (params, pos_def) (** Translates a surface definition into condition into a desugared {!type: Ast.rule} *) let process_default (ctxt : Name_resolution.context) (local_vars : Ast.expr Var.t Ident.Map.t) (scope : ScopeName.t) (def_key : Ast.ScopeDef.t Mark.pos) (rule_id : RuleName.t) (params : (Ast.expr Var.t Mark.pos * typ) list Mark.pos option) (precond : Ast.expr boxed option) (exception_situation : Ast.exception_situation) (label_situation : Ast.label_situation) (just : S.expression option) (cons : S.expression) : Ast.rule = let just = match just with | Some just -> Some (translate_expr (Some scope) (Some def_key) ctxt local_vars just) | None -> None in let just = merge_conditions precond just (Mark.get def_key) in let cons = translate_expr (Some scope) (Some def_key) ctxt local_vars cons in { Ast.rule_just = just; rule_cons = cons; rule_parameter = params; rule_exception = exception_situation; rule_id; rule_label = label_situation; } (** Wrapper around {!val: process_default} that performs some name disambiguation *) let process_def (precond : Ast.expr boxed option) (scope_uid : ScopeName.t) (ctxt : Name_resolution.context) (prgm : Ast.program) (def : S.definition) : Ast.program = let scope : Ast.scope = ScopeName.Map.find scope_uid prgm.program_root.module_scopes in let scope_ctxt = ScopeName.Map.find scope_uid ctxt.scopes in let def_key = Name_resolution.get_def_key (Mark.remove def.definition_name) def.definition_state scope_uid ctxt (Mark.get def.definition_name) in let scope_def_ctxt = Ast.ScopeDef.Map.find def_key scope_ctxt.scope_defs_contexts in (* We add to the name resolution context the name of the parameter variable *) let local_vars, param_uids = process_rule_parameters ctxt (Mark.copy def.definition_name def_key) def in let scope_updated = let scope_def = Ast.ScopeDef.Map.find def_key scope.scope_defs in let rule_name = def.definition_id in let label_situation = match def.definition_label with | Some (label_str, label_pos) -> Ast.ExplicitlyLabeled (Ident.Map.find label_str scope_def_ctxt.label_idmap, label_pos) | None -> Ast.Unlabeled in let exception_situation = match def.S.definition_exception_to with | NotAnException -> Ast.BaseCase | UnlabeledException -> ( match scope_def_ctxt.default_exception_rulename with | None | Some (Name_resolution.Ambiguous _) -> (* This should have been caught previously by check_unlabeled_exception *) assert false (* should not happen *) | Some (Name_resolution.Unique (name, pos)) -> ExceptionToRule (name, pos)) | ExceptionToLabel label_str -> ( try let label_id = Ident.Map.find (Mark.remove label_str) scope_def_ctxt.label_idmap in ExceptionToLabel (label_id, Mark.get label_str) with Ident.Map.Not_found _ -> Message.raise_spanned_error (Mark.get label_str) "Unknown label for the scope variable %a: \"%s\"" Ast.ScopeDef.format def_key (Mark.remove label_str)) in let scope_def = { scope_def with scope_def_rules = RuleName.Map.add rule_name (process_default ctxt local_vars scope_uid (def_key, Mark.get def.definition_name) rule_name param_uids precond exception_situation label_situation def.definition_condition def.definition_expr) scope_def.scope_def_rules; } in { scope with scope_defs = Ast.ScopeDef.Map.add def_key scope_def scope.scope_defs; } in let module_scopes = ScopeName.Map.add scope_uid scope_updated prgm.program_root.module_scopes in { prgm with program_root = { prgm.program_root with module_scopes } } (** Translates a {!type: S.rule} from the surface language *) let process_rule (precond : Ast.expr boxed option) (scope : ScopeName.t) (ctxt : Name_resolution.context) (prgm : Ast.program) (rule : S.rule) : Ast.program = let def = S.rule_to_def rule in process_def precond scope ctxt prgm def (** Translates assertions *) let process_assert (precond : Ast.expr boxed option) (scope_uid : ScopeName.t) (ctxt : Name_resolution.context) (prgm : Ast.program) (ass : S.assertion) : Ast.program = let scope : Ast.scope = ScopeName.Map.find scope_uid prgm.program_root.module_scopes in let ass = translate_expr (Some scope_uid) None ctxt Ident.Map.empty (match ass.S.assertion_condition with | None -> ass.S.assertion_content | Some cond -> ( S.IfThenElse ( cond, ass.S.assertion_content, Mark.copy cond (S.Literal (S.LBool true)) ), Mark.get cond )) in let assertion = match precond with | Some precond -> Expr.eifthenelse precond ass (Expr.elit (LBool true) (Mark.get precond)) (Mark.get precond) | None -> ass in (* The assertion name is not very relevant and should not be used in error messages, it is only a reference to designate the assertion instead of its expression. *) let assertion_name = Ast.AssertionName.fresh ("assert", Expr.pos assertion) in let new_scope = { scope with scope_assertions = Ast.AssertionName.Map.add assertion_name assertion scope.scope_assertions; } in let module_scopes = ScopeName.Map.add scope_uid new_scope prgm.program_root.module_scopes in { prgm with program_root = { prgm.program_root with module_scopes } } (** Translates a surface definition, rule or assertion *) let process_scope_use_item (precond : S.expression option) (scope : ScopeName.t) (ctxt : Name_resolution.context) (prgm : Ast.program) (item : S.scope_use_item Mark.pos) : Ast.program = let precond = Option.map (translate_expr (Some scope) None ctxt Ident.Map.empty) precond in match Mark.remove item with | S.Rule rule -> process_rule precond scope ctxt prgm rule | S.Definition def -> process_def precond scope ctxt prgm def | S.Assertion ass -> process_assert precond scope ctxt prgm ass | S.DateRounding (r, _) -> let scope_uid = scope in let scope : Ast.scope = ScopeName.Map.find scope_uid prgm.program_root.module_scopes in let r = match r with | S.Increasing -> Ast.Increasing | S.Decreasing -> Ast.Decreasing in let new_scope = match List.find_opt (fun (scope_opt, _) -> scope_opt = Ast.DateRounding Ast.Increasing || scope_opt = Ast.DateRounding Ast.Decreasing) scope.scope_options with | Some (_, old_pos) -> Message.raise_multispanned_error [None, old_pos; None, Mark.get item] "You cannot set multiple date rounding modes" | None -> { scope with scope_options = Mark.copy item (Ast.DateRounding r) :: scope.scope_options; } in let module_scopes = ScopeName.Map.add scope_uid new_scope prgm.program_root.module_scopes in { prgm with program_root = { prgm.program_root with module_scopes } } | _ -> prgm (** {1 Translating top-level items} *) (* If this is an unlabeled exception, ensures that it has a unique default definition *) let check_unlabeled_exception (scope : ScopeName.t) (ctxt : Name_resolution.context) (item : S.scope_use_item Mark.pos) : unit = let scope_ctxt = ScopeName.Map.find scope ctxt.scopes in match Mark.remove item with | S.Rule _ | S.Definition _ -> ( let def_key, exception_to = match Mark.remove item with | S.Rule rule -> ( Name_resolution.get_def_key (Mark.remove rule.rule_name) rule.rule_state scope ctxt (Mark.get rule.rule_name), rule.rule_exception_to ) | S.Definition def -> ( Name_resolution.get_def_key (Mark.remove def.definition_name) def.definition_state scope ctxt (Mark.get def.definition_name), def.definition_exception_to ) | _ -> assert false (* should not happen *) in let scope_def_ctxt = Ast.ScopeDef.Map.find def_key scope_ctxt.scope_defs_contexts in match exception_to with | S.NotAnException | S.ExceptionToLabel _ -> () (* If this is an unlabeled exception, we check that it has a unique default definition *) | S.UnlabeledException -> ( match scope_def_ctxt.default_exception_rulename with | None -> Message.raise_spanned_error (Mark.get item) "This exception does not have a corresponding definition" | Some (Ambiguous pos) -> Message.raise_multispanned_error ([Some "Ambiguous exception", Mark.get item] @ List.map (fun p -> Some "Candidate definition", p) pos) "This exception can refer to several definitions. Try using labels \ to disambiguate" | Some (Unique _) -> ())) | _ -> () (** Translates a surface scope use, which is a bunch of definitions *) let process_scope_use (ctxt : Name_resolution.context) (prgm : Ast.program) (use : S.scope_use) : Ast.program = let scope_uid = Name_resolution.get_scope ctxt use.scope_use_name in (* Make sure the scope exists *) let prgm = match ScopeName.Map.find_opt scope_uid prgm.program_root.module_scopes with | Some _ -> prgm | None -> assert false (* should not happen *) in let precond = use.scope_use_condition in List.iter (check_unlabeled_exception scope_uid ctxt) use.scope_use_items; List.fold_left (process_scope_use_item precond scope_uid ctxt) prgm use.scope_use_items let process_topdef (ctxt : Name_resolution.context) (prgm : Ast.program) (def : S.top_def) : Ast.program = let id = Ident.Map.find (Mark.remove def.S.topdef_name) ctxt.Name_resolution.local.topdefs in let translate_typ t = Name_resolution.process_type ctxt t in let translate_tbase (tbase, m) = translate_typ (Base tbase, m) in let typ = translate_typ def.S.topdef_type in let expr_opt = match def.S.topdef_expr, def.S.topdef_args with | None, _ -> None | Some e, None -> Some (Expr.unbox_closed (translate_expr None None ctxt Ident.Map.empty e)) | Some e, Some (args, _) -> let local_vars, args_tys = List.fold_left_map (fun local_vars ((lbl, pos), ty) -> let v = Var.make lbl in let local_vars = Ident.Map.add lbl v local_vars in local_vars, ((v, pos), ty)) Ident.Map.empty args in let body = translate_expr None None ctxt local_vars e in let args, tys = List.split args_tys in let () = match tys with | [(Data (S.TTuple _), pos)] -> Message.raise_spanned_error pos "Defining arguments of a function as a tuple is not supported, \ please name the individual arguments" | _ -> () in let e = Expr.make_abs (Array.of_list (List.map Mark.remove args)) body (List.map translate_tbase tys) (Mark.get def.S.topdef_name) in Some (Expr.unbox_closed e) in let module_topdefs = TopdefName.Map.update id (fun def0 -> match def0, expr_opt with | None, eopt -> Some (eopt, typ) | Some (eopt0, ty0), eopt -> ( let err msg = Message.raise_multispanned_error [ None, Mark.get (TopdefName.get_info id); None, Mark.get def.S.topdef_name; ] (msg ^^ " for %a") TopdefName.format id in if not (Type.equal ty0 typ) then err "Conflicting type definitions" else match eopt0, eopt with | None, None -> err "Multiple declarations" | Some _, Some _ -> err "Multiple definitions" | Some e, None -> Some (Some e, typ) | None, Some e -> Some (Some e, ty0))) prgm.Ast.program_root.module_topdefs in { prgm with program_root = { prgm.program_root with module_topdefs } } let attribute_to_io (attr : S.scope_decl_context_io) : Ast.io = { Ast.io_output = attr.scope_decl_context_io_output; Ast.io_input = Mark.map (fun io -> match io with | S.Input -> Runtime.OnlyInput | S.Internal -> Runtime.NoInput | S.Context -> Runtime.Reentrant) attr.scope_decl_context_io_input; } let init_scope_defs (ctxt : Name_resolution.context) (scope_idmap : scope_var_or_subscope Ident.Map.t) : Ast.scope_def Ast.ScopeDef.Map.t = (* Initializing the definitions of all scopes and subscope vars, with no rules yet inside *) let add_def _ v scope_def_map = match v with | ScopeVar v -> ( let v_sig = ScopeVar.Map.find v ctxt.Name_resolution.var_typs in match v_sig.var_sig_states_list with | [] -> let def_key = Ast.ScopeDef.Var (v, None) in Ast.ScopeDef.Map.add def_key { Ast.scope_def_rules = RuleName.Map.empty; Ast.scope_def_typ = v_sig.var_sig_typ; Ast.scope_def_is_condition = v_sig.var_sig_is_condition; Ast.scope_def_parameters = v_sig.var_sig_parameters; Ast.scope_def_io = attribute_to_io v_sig.var_sig_io; } scope_def_map | states -> let scope_def, _ = List.fold_left (fun (acc, i) state -> let def_key = Ast.ScopeDef.Var (v, Some state) in let def = { Ast.scope_def_rules = RuleName.Map.empty; Ast.scope_def_typ = v_sig.var_sig_typ; Ast.scope_def_is_condition = v_sig.var_sig_is_condition; Ast.scope_def_parameters = v_sig.var_sig_parameters; Ast.scope_def_io = (* The first state should have the input I/O of the original variable, and the last state should have the output I/O of the original variable. All intermediate states shall have "internal" I/O.*) (let original_io = attribute_to_io v_sig.var_sig_io in let io_input = if i = 0 then original_io.io_input else NoInput, Mark.get (StateName.get_info state) in let io_output = if i = List.length states - 1 then original_io.io_output else false, Mark.get (StateName.get_info state) in { io_input; io_output }); } in Ast.ScopeDef.Map.add def_key def acc, i + 1) (scope_def_map, 0) states in scope_def) | SubScope (v0, subscope_uid) -> let sub_scope_def = Name_resolution.get_scope_context ctxt subscope_uid in let ctxt = List.fold_left (fun ctx m -> { ctxt with local = ModuleName.Map.find m ctx.Name_resolution.modules; }) ctxt (ScopeName.path subscope_uid) in Ident.Map.fold (fun _ v scope_def_map -> match v with | SubScope _ -> scope_def_map | ScopeVar v -> (* TODO: shouldn't we ignore internal variables too at this point ? *) let v_sig = ScopeVar.Map.find v ctxt.Name_resolution.var_typs in let def_key = Ast.ScopeDef.SubScopeVar (v0, v, Mark.get (ScopeVar.get_info v)) in Ast.ScopeDef.Map.add def_key { Ast.scope_def_rules = RuleName.Map.empty; Ast.scope_def_typ = v_sig.var_sig_typ; Ast.scope_def_is_condition = v_sig.var_sig_is_condition; Ast.scope_def_parameters = v_sig.var_sig_parameters; Ast.scope_def_io = attribute_to_io v_sig.var_sig_io; } scope_def_map) sub_scope_def.Name_resolution.var_idmap scope_def_map in Ident.Map.fold add_def scope_idmap Ast.ScopeDef.Map.empty (** Main function of this module *) let translate_program (ctxt : Name_resolution.context) (surface : S.program) : Ast.program = let get_scope s_uid = let s_context = ScopeName.Map.find s_uid ctxt.scopes in let scope_vars = Ident.Map.fold (fun _ v acc -> match v with | SubScope _ -> acc | ScopeVar v -> ( let v_sig = ScopeVar.Map.find v ctxt.Name_resolution.var_typs in match v_sig.Name_resolution.var_sig_states_list with | [] -> ScopeVar.Map.add v Ast.WholeVar acc | states -> ScopeVar.Map.add v (Ast.States states) acc)) s_context.Name_resolution.var_idmap ScopeVar.Map.empty in let scope_sub_scopes = Ident.Map.fold (fun _ v acc -> match v with | ScopeVar _ -> acc | SubScope (sub_var, sub_scope) -> SubScopeName.Map.add sub_var sub_scope acc) s_context.Name_resolution.var_idmap SubScopeName.Map.empty in { Ast.scope_vars; scope_sub_scopes; scope_defs = init_scope_defs ctxt s_context.var_idmap; scope_assertions = Ast.AssertionName.Map.empty; scope_meta_assertions = []; scope_options = []; scope_uid = s_uid; } in let get_scopes mctx = Ident.Map.fold (fun _ tydef acc -> match tydef with | Name_resolution.TScope (s_uid, _) -> ScopeName.Map.add s_uid (get_scope s_uid) acc | _ -> acc) mctx.Name_resolution.typedefs ScopeName.Map.empty in let program_modules = ModuleName.Map.map (fun mctx -> { Ast.module_scopes = get_scopes mctx; Ast.module_topdefs = Ident.Map.fold (fun _ name acc -> TopdefName.Map.add name ( None, TopdefName.Map.find name ctxt.Name_resolution.topdef_types ) acc) mctx.topdefs TopdefName.Map.empty; }) ctxt.modules in let program_ctx = let open Name_resolution in let ctx_scopes mctx acc = Ident.Map.fold (fun _ tydef acc -> match tydef with | TScope (s_uid, info) -> ScopeName.Map.add s_uid info acc | _ -> acc) mctx.Name_resolution.typedefs acc in let ctx_modules = let rec aux mctx = Ident.Map.fold (fun _ m (M acc) -> let sub = aux (ModuleName.Map.find m ctxt.modules) in M (ModuleName.Map.add m sub acc)) mctx.used_modules (M ModuleName.Map.empty) in aux ctxt.local in { ctx_structs = ctxt.structs; ctx_enums = ctxt.enums; ctx_scopes = ModuleName.Map.fold (fun _ -> ctx_scopes) ctxt.modules (ctx_scopes ctxt.local ScopeName.Map.empty); ctx_topdefs = ctxt.topdef_types; ctx_struct_fields = ctxt.local.field_idmap; ctx_enum_constrs = ctxt.local.constructor_idmap; ctx_scope_index = Ident.Map.filter_map (fun _ -> function | Name_resolution.TScope (s, _) -> Some s | _ -> None) ctxt.local.typedefs; ctx_modules; } in let desugared = { Ast.program_lang = surface.program_lang; Ast.program_module_name = surface.Surface.Ast.program_module_name; Ast.program_modules; Ast.program_ctx; Ast.program_root = { Ast.module_scopes = get_scopes ctxt.Name_resolution.local; Ast.module_topdefs = TopdefName.Map.empty; }; } in let process_code_block ctxt prgm block = List.fold_left (fun prgm item -> match Mark.remove item with | S.ScopeUse use -> process_scope_use ctxt prgm use | S.Topdef def -> process_topdef ctxt prgm def | S.ScopeDecl _ | S.StructDecl _ | S.EnumDecl _ -> prgm) prgm block in let rec process_structure (prgm : Ast.program) (item : S.law_structure) : Ast.program = match item with | S.LawHeading (_, children) -> List.fold_left (fun prgm child -> process_structure prgm child) prgm children | S.CodeBlock (block, _, _) -> process_code_block ctxt prgm block | S.ModuleDef _ | S.LawInclude _ | S.LawText _ | S.ModuleUse _ -> prgm in List.fold_left process_structure desugared surface.S.program_items
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>