package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.0.tar.gz
md5=1408a1cce45c7d5990b981e83e7589c2
sha512=eb3b923aa1f743378b4a05e30f50be5d180dc862a716270d747a90e469017f42fa5fc41352f02fbbf59cd2560f91c4f1b32cf38d80085b105d9387b0aed2039d
doc/src/catala.lcalc/compile_without_exceptions.ml.html
Source file compile_without_exceptions.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020-2022 Inria, contributor: Alain Delaët-Tixeuil <alain.delaet--tixeuil@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Catala_utils module D = Dcalc.Ast module A = Ast (** The main idea around this pass is to compile Dcalc to Lcalc without using [raise EmptyError] nor [try _ with EmptyError -> _]. To do so, we use the same technique as in rust or erlang to handle this kind of exceptions. Each [raise EmptyError] will be translated as [None] and each [try e1 with EmtpyError -> e2] as [match e1 with | None -> e2 | Some x -> x]. When doing this naively, this requires to add matches and Some constructor everywhere. We apply here an other technique where we generate what we call `hoists`. Hoists are expression whom could minimally [raise EmptyError]. For instance in [let x = <e1, e2, ..., en| e_just :- e_cons> * 3 in x + 1], the sub-expression [<e1, e2, ..., en| e_just :- e_cons>] can produce an empty error. So we make a hoist with a new variable [y] linked to the Dcalc expression [<e1, e2, ..., en| e_just :- e_cons>], and we return as the translated expression [let x = y * 3 in x + 1]. The compilation of expressions is found in the functions [translate_and_hoist ctx e] and [translate_expr ctx e]. Every option-generating expression when calling [translate_and_hoist] will be hoisted and later handled by the [translate_expr] function. Every other cases is found in the translate_and_hoist function. *) open Shared_ast type 'm hoists = ('m A.expr, 'm D.expr) Var.Map.t (** Hoists definition. It represent bindings between [A.Var.t] and [D.expr]. *) type 'm info = { expr : 'm A.expr boxed; var : 'm A.expr Var.t; is_pure : bool } (** Information about each encontered Dcalc variable is stored inside a context : what is the corresponding LCalc variable; an expression corresponding to the variable build correctly using Bindlib, and a boolean `is_pure` indicating whenever the variable can be an EmptyError and hence should be matched (false) or if it never can be EmptyError (true). *) let pp_info (fmt : Format.formatter) (info : 'm info) = Format.fprintf fmt "{var: %a; is_pure: %b}" Print.var info.var info.is_pure type 'm ctx = { decl_ctx : decl_ctx; vars : ('m D.expr, 'm info) Var.Map.t; (** information context about variables in the current scope *) } let _pp_ctx (fmt : Format.formatter) (ctx : 'm ctx) = let pp_binding (fmt : Format.formatter) ((v, info) : 'm D.expr Var.t * 'm info) = Format.fprintf fmt "%a: %a" Print.var v pp_info info in let pp_bindings = Format.pp_print_list ~pp_sep:(fun fmt () -> Format.pp_print_string fmt "; ") pp_binding in Format.fprintf fmt "@[<2>[%a]@]" pp_bindings (Var.Map.bindings ctx.vars) (** [find ~info n ctx] is a warpper to ocaml's Map.find that handle errors in a slightly better way. *) let find ?(info : string = "none") (n : 'm D.expr Var.t) (ctx : 'm ctx) : 'm info = (* let _ = Format.asprintf "Searching for variable %a inside context %a" Print.var n pp_ctx ctx |> Cli.debug_print in *) try Var.Map.find n ctx.vars with Not_found -> Errors.raise_spanned_error Pos.no_pos "Internal Error: Variable %a was not found in the current environment. \ Additional informations : %s." Print.var n info (** [add_var pos var is_pure ctx] add to the context [ctx] the Dcalc variable var, creating a unique corresponding variable in Lcalc, with the corresponding expression, and the boolean is_pure. It is usefull for debuging purposes as it printing each of the Dcalc/Lcalc variable pairs. *) let add_var (mark : 'm mark) (var : 'm D.expr Var.t) (is_pure : bool) (ctx : 'm ctx) : 'm ctx = let new_var = Var.make (Bindlib.name_of var) in let expr = Expr.make_var new_var mark in (* Cli.debug_print @@ Format.asprintf "D.%a |-> A.%a" Print.var var Print.var new_var; *) { ctx with vars = Var.Map.update var (fun _ -> Some { expr; var = new_var; is_pure }) ctx.vars; } (** [tau' = translate_typ tau] translate the a dcalc type into a lcalc type. Since positions where there is thunked expressions is exactly where we will put option expressions. Hence, the transformation simply reduce [unit -> 'a] into ['a option] recursivly. There is no polymorphism inside catala. *) let rec translate_typ (tau : typ) : typ = (Fun.flip Marked.same_mark_as) tau begin match Marked.unmark tau with | TLit l -> TLit l | TTuple ts -> TTuple (List.map translate_typ ts) | TStruct s -> TStruct s | TEnum en -> TEnum en | TOption t -> TOption t | TAny -> TAny | TArray ts -> TArray (translate_typ ts) (* catala is not polymorphic *) | TArrow ([(TLit TUnit, _)], t2) -> TOption (translate_typ t2) | TArrow (t1, t2) -> TArrow (List.map translate_typ t1, translate_typ t2) end (** [c = disjoint_union_maps cs] Compute the disjoint union of multiple maps. Raises an internal error if there is two identicals keys in differnts parts. *) let disjoint_union_maps (pos : Pos.t) (cs : ('e, 'a) Var.Map.t list) : ('e, 'a) Var.Map.t = let disjoint_union = Var.Map.union (fun _ _ _ -> Errors.raise_spanned_error pos "Internal Error: Two supposed to be disjoints maps have one shared \ key.") in List.fold_left disjoint_union Var.Map.empty cs (** [e' = translate_and_hoist ctx e ] Translate the Dcalc expression e into an expression in Lcalc, given we translate each hoists correctly. It ensures the equivalence between the execution of e and the execution of e' are equivalent in an environement where each variable v, where (v, e_v) is in hoists, has the non-empty value in e_v. *) let rec translate_and_hoist (ctx : 'm ctx) (e : 'm D.expr) : 'm A.expr boxed * 'm hoists = let mark = Marked.get_mark e in let pos = Expr.mark_pos mark in match Marked.unmark e with (* empty-producing/using terms. We hoist those. (D.EVar in some cases, EApp(D.EVar _, [ELit LUnit]), EDefault _, ELit LEmptyDefault) I'm unsure about assert. *) | EVar v -> (* todo: for now, every unpure (such that [is_pure] is [false] in the current context) is thunked, hence matched in the next case. This assumption can change in the future, and this case is here for this reason. *) if not (find ~info:"search for a variable" v ctx).is_pure then let v' = Var.make (Bindlib.name_of v) in (* Cli.debug_print @@ Format.asprintf "Found an unpure variable %a, created a variable %a to replace it" Print.var v Print.var v'; *) Expr.make_var v' mark, Var.Map.singleton v' e else (find ~info:"should never happen" v ctx).expr, Var.Map.empty | EApp { f = EVar v, p; args = [(ELit LUnit, _)] } -> if not (find ~info:"search for a variable" v ctx).is_pure then let v' = Var.make (Bindlib.name_of v) in (* Cli.debug_print @@ Format.asprintf "Found an unpure variable %a, created a variable %a to replace it" Print.var v Print.var v'; *) Expr.make_var v' mark, Var.Map.singleton v' (EVar v, p) else Errors.raise_spanned_error (Expr.pos e) "Internal error: an pure variable was found in an unpure environment." | EDefault _ -> let v' = Var.make "default_term" in Expr.make_var v' mark, Var.Map.singleton v' e | ELit LEmptyError -> let v' = Var.make "empty_litteral" in Expr.make_var v' mark, Var.Map.singleton v' e (* This one is a very special case. It transform an unpure expression environement to a pure expression. *) | EErrorOnEmpty arg -> (* [ match arg with | None -> raise NoValueProvided | Some v -> {{ v }} ] *) let silent_var = Var.make "_" in let x = Var.make "non_empty_argument" in let arg' = translate_expr ctx arg in let rty = Expr.maybe_ty mark in ( A.make_matchopt_with_abs_arms arg' (Expr.make_abs [| silent_var |] (Expr.eraise NoValueProvided (Expr.with_ty mark rty)) [rty] pos) (Expr.make_abs [| x |] (Expr.make_var x mark) [rty] pos), Var.Map.empty ) (* pure terms *) | ELit ((LBool _ | LInt _ | LRat _ | LMoney _ | LUnit | LDate _ | LDuration _) as l) -> Expr.elit l mark, Var.Map.empty | EIfThenElse { cond; etrue; efalse } -> let cond', h1 = translate_and_hoist ctx cond in let etrue', h2 = translate_and_hoist ctx etrue in let efalse', h3 = translate_and_hoist ctx efalse in let e' = Expr.eifthenelse cond' etrue' efalse' mark in (*(* equivalent code : *) let e' = let+ cond' = cond' and+ etrue' = etrue' and+ efalse' = efalse' in (A.EIfThenElse (cond', etrue', efalse'), pos) in *) e', disjoint_union_maps (Expr.pos e) [h1; h2; h3] | EAssert e1 -> (* same behavior as in the ICFP paper: if e1 is empty, then no error is raised. *) let e1', h1 = translate_and_hoist ctx e1 in Expr.eassert e1' mark, h1 | EAbs { binder; tys } -> let vars, body = Bindlib.unmbind binder in let ctx, lc_vars = ArrayLabels.fold_right vars ~init:(ctx, []) ~f:(fun var (ctx, lc_vars) -> (* we suppose the invariant that when applying a function, its arguments cannot be of the type "option". The code should behave correctly in the without this assumption if we put here an is_pure=false, but the types are more compilcated. (unimplemented for now) *) let ctx = add_var mark var true ctx in let lc_var = (find var ctx).var in ctx, lc_var :: lc_vars) in let lc_vars = Array.of_list lc_vars in (* here we take the guess that if we cannot build the closure because one of the variable is empty, then we cannot build the function. *) let new_body, hoists = translate_and_hoist ctx body in let new_binder = Expr.bind lc_vars new_body in Expr.eabs new_binder (List.map translate_typ tys) mark, hoists | EApp { f = e1; args } -> let e1', h1 = translate_and_hoist ctx e1 in let args', h_args = args |> List.map (translate_and_hoist ctx) |> List.split in let hoists = disjoint_union_maps (Expr.pos e) (h1 :: h_args) in let e' = Expr.eapp e1' args' mark in e', hoists | EStruct { name; fields } -> let fields', h_fields = StructField.Map.fold (fun field e (fields, hoists) -> let e, h = translate_and_hoist ctx e in StructField.Map.add field e fields, h :: hoists) fields (StructField.Map.empty, []) in let hoists = disjoint_union_maps (Expr.pos e) h_fields in Expr.estruct name fields' mark, hoists | EStructAccess { name; e = e1; field } -> let e1', hoists = translate_and_hoist ctx e1 in let e1' = Expr.estructaccess e1' field name mark in e1', hoists | ETuple es -> let hoists, es' = List.fold_left_map (fun hoists e -> let e, h = translate_and_hoist ctx e in h :: hoists, e) [] es in Expr.etuple es' mark, disjoint_union_maps (Expr.pos e) hoists | ETupleAccess { e = e1; index; size } -> let e1', hoists = translate_and_hoist ctx e1 in let e1' = Expr.etupleaccess e1' index size mark in e1', hoists | EInj { name; e = e1; cons } -> let e1', hoists = translate_and_hoist ctx e1 in let e1' = Expr.einj e1' cons name mark in e1', hoists | EMatch { name; e = e1; cases } -> let e1', h1 = translate_and_hoist ctx e1 in let cases', h_cases = EnumConstructor.Map.fold (fun cons e (cases, hoists) -> let e', h = translate_and_hoist ctx e in EnumConstructor.Map.add cons e' cases, h :: hoists) cases (EnumConstructor.Map.empty, []) in let hoists = disjoint_union_maps (Expr.pos e) (h1 :: h_cases) in let e' = Expr.ematch e1' name cases' mark in e', hoists | EArray es -> let es', hoists = es |> List.map (translate_and_hoist ctx) |> List.split in Expr.earray es' mark, disjoint_union_maps (Expr.pos e) hoists | EOp { op; tys } -> Expr.eop (Operator.translate op) tys mark, Var.Map.empty and translate_expr ?(append_esome = true) (ctx : 'm ctx) (e : 'm D.expr) : 'm A.expr boxed = let e', hoists = translate_and_hoist ctx e in let hoists = Var.Map.bindings hoists in let _pos = Marked.get_mark e in (* build the hoists *) (* Cli.debug_print @@ Format.asprintf "hoist for the expression: [%a]" (Format.pp_print_list Print.var) (List.map fst hoists); *) ListLabels.fold_left hoists ~init:(if append_esome then A.make_some e' else e') ~f:(fun acc (v, (hoist, mark_hoist)) -> (* Cli.debug_print @@ Format.asprintf "hoist using A.%a" Print.var v; *) let pos = Expr.mark_pos mark_hoist in let c' : 'm A.expr boxed = match hoist with (* Here we have to handle only the cases appearing in hoists, as defined the [translate_and_hoist] function. *) | EVar v -> (find ~info:"should never happen" v ctx).expr | EDefault { excepts; just; cons } -> let excepts' = List.map (translate_expr ctx) excepts in let just' = translate_expr ctx just in let cons' = translate_expr ctx cons in (* calls handle_option. *) Expr.make_app (Expr.make_var (Var.translate A.handle_default_opt) mark_hoist) [Expr.earray excepts' mark_hoist; just'; cons'] pos | ELit LEmptyError -> A.make_none mark_hoist | EAssert arg -> let arg' = translate_expr ctx arg in (* [ match arg with | None -> raise NoValueProvided | Some v -> assert {{ v }} ] *) let silent_var = Var.make "_" in let x = Var.make "assertion_argument" in A.make_matchopt_with_abs_arms arg' (Expr.make_abs [| silent_var |] (Expr.eraise NoValueProvided mark_hoist) [TAny, Expr.mark_pos mark_hoist] pos) (Expr.make_abs [| x |] (Expr.eassert (Expr.make_var x mark_hoist) mark_hoist) [TAny, Expr.mark_pos mark_hoist] pos) | _ -> Errors.raise_spanned_error (Expr.mark_pos mark_hoist) "Internal Error: An term was found in a position where it should \ not be" in (* [ match {{ c' }} with | None -> None | Some {{ v }} -> {{ acc }} end ] *) (* Cli.debug_print @@ Format.asprintf "build matchopt using %a" Print.var v; *) A.make_matchopt pos v (TAny, Expr.mark_pos mark_hoist) c' (A.make_none mark_hoist) acc) let rec translate_scope_let (ctx : 'm ctx) (lets : 'm D.expr scope_body_expr) : 'm A.expr scope_body_expr Bindlib.box = match lets with | Result e -> Bindlib.box_apply (fun e -> Result e) (Expr.Box.lift (translate_expr ~append_esome:false ctx e)) | ScopeLet { scope_let_kind = SubScopeVarDefinition; scope_let_typ = typ; scope_let_expr = EAbs { binder; _ }, emark; scope_let_next = next; scope_let_pos = pos; } -> (* special case : the subscope variable is thunked (context i/o). We remove this thunking. *) let _, expr = Bindlib.unmbind binder in let var_is_pure = true in let var, next = Bindlib.unbind next in (* Cli.debug_print @@ Format.asprintf "unbinding %a" Print.var var; *) let vmark = Expr.with_ty emark ~pos typ in let ctx' = add_var vmark var var_is_pure ctx in let new_var = (find ~info:"variable that was just created" var ctx').var in let new_next = translate_scope_let ctx' next in Bindlib.box_apply2 (fun new_expr new_next -> ScopeLet { scope_let_kind = SubScopeVarDefinition; scope_let_typ = translate_typ typ; scope_let_expr = new_expr; scope_let_next = new_next; scope_let_pos = pos; }) (Expr.Box.lift (translate_expr ctx ~append_esome:false expr)) (Bindlib.bind_var new_var new_next) | ScopeLet { scope_let_kind = SubScopeVarDefinition; scope_let_typ = typ; scope_let_expr = (EErrorOnEmpty _, emark) as expr; scope_let_next = next; scope_let_pos = pos; } -> (* special case: regular input to the subscope *) let var_is_pure = true in let var, next = Bindlib.unbind next in (* Cli.debug_print @@ Format.asprintf "unbinding %a" Print.var var; *) let vmark = Expr.with_ty emark ~pos typ in let ctx' = add_var vmark var var_is_pure ctx in let new_var = (find ~info:"variable that was just created" var ctx').var in Bindlib.box_apply2 (fun new_expr new_next -> ScopeLet { scope_let_kind = SubScopeVarDefinition; scope_let_typ = translate_typ typ; scope_let_expr = new_expr; scope_let_next = new_next; scope_let_pos = pos; }) (Expr.Box.lift (translate_expr ctx ~append_esome:false expr)) (Bindlib.bind_var new_var (translate_scope_let ctx' next)) | ScopeLet { scope_let_kind = SubScopeVarDefinition; scope_let_pos = pos; scope_let_expr = expr; _; } -> Errors.raise_spanned_error pos "Internal Error: found an SubScopeVarDefinition that does not satisfy \ the invariants when translating Dcalc to Lcalc without exceptions: \ @[<hov 2>%a@]" (Expr.format ctx.decl_ctx) expr | ScopeLet { scope_let_kind = kind; scope_let_typ = typ; scope_let_expr = expr; scope_let_next = next; scope_let_pos = pos; } -> let var_is_pure = match kind with | DestructuringInputStruct -> ( (* Here, we have to distinguish between context and input variables. We can do so by looking at the typ of the destructuring: if it's thunked, then the variable is context. If it's not thunked, it's a regular input. *) match Marked.unmark typ with | TArrow ([(TLit TUnit, _)], _) -> false | _ -> true) | ScopeVarDefinition | SubScopeVarDefinition | CallingSubScope | DestructuringSubScopeResults | Assertion -> true in let var, next = Bindlib.unbind next in (* Cli.debug_print @@ Format.asprintf "unbinding %a" Print.var var; *) let vmark = Expr.with_ty (Marked.get_mark expr) ~pos typ in let ctx' = add_var vmark var var_is_pure ctx in let new_var = (find ~info:"variable that was just created" var ctx').var in Bindlib.box_apply2 (fun new_expr new_next -> ScopeLet { scope_let_kind = kind; scope_let_typ = translate_typ typ; scope_let_expr = new_expr; scope_let_next = new_next; scope_let_pos = pos; }) (Expr.Box.lift (translate_expr ctx ~append_esome:false expr)) (Bindlib.bind_var new_var (translate_scope_let ctx' next)) let translate_scope_body (scope_pos : Pos.t) (ctx : 'm ctx) (body : 'm D.expr scope_body) : 'm A.expr scope_body Bindlib.box = match body with | { scope_body_expr = result; scope_body_input_struct = input_struct; scope_body_output_struct = output_struct; } -> let v, lets = Bindlib.unbind result in let vmark = let m = match lets with | Result e | ScopeLet { scope_let_expr = e; _ } -> Marked.get_mark e in Expr.map_mark (fun _ -> scope_pos) (fun ty -> ty) m in let ctx' = add_var vmark v true ctx in let v' = (find ~info:"variable that was just created" v ctx').var in Bindlib.box_apply (fun new_expr -> { scope_body_expr = new_expr; scope_body_input_struct = input_struct; scope_body_output_struct = output_struct; }) (Bindlib.bind_var v' (translate_scope_let ctx' lets)) let translate_code_items (ctx : 'm ctx) (scopes : 'm D.expr code_item_list) : 'm A.expr code_item_list Bindlib.box = let _ctx, scopes = Scope.fold_map ~f: (fun ctx var -> function | Topdef (name, ty, e) -> ( add_var (Marked.get_mark e) var true ctx, Bindlib.box_apply (fun e -> Topdef (name, ty, e)) (Expr.Box.lift (translate_expr ~append_esome:false ctx e)) ) | ScopeDef (scope_name, scope_body) -> ( ctx, let scope_pos = Marked.get_mark (ScopeName.get_info scope_name) in Bindlib.box_apply (fun body -> ScopeDef (scope_name, body)) (translate_scope_body scope_pos ctx scope_body) )) ~varf:Var.translate ctx scopes in scopes let translate_program (prgm : 'm D.program) : 'm A.program = let inputs_structs = Scope.fold_left prgm.code_items ~init:[] ~f:(fun acc def _ -> match def with | ScopeDef (_, body) -> body.scope_body_input_struct :: acc | Topdef _ -> acc) in (* Cli.debug_print @@ Format.asprintf "List of structs to modify: [%a]" (Format.pp_print_list D.StructName.format_t) inputs_structs; *) let decl_ctx = { prgm.decl_ctx with ctx_enums = prgm.decl_ctx.ctx_enums |> EnumName.Map.add A.option_enum A.option_enum_config; } in let decl_ctx = { decl_ctx with ctx_structs = prgm.decl_ctx.ctx_structs |> StructName.Map.mapi (fun n str -> if List.mem n inputs_structs then StructField.Map.map translate_typ str (* Cli.debug_print @@ Format.asprintf "Input type: %a" (Print.typ decl_ctx) tau; Cli.debug_print @@ Format.asprintf "Output type: %a" (Print.typ decl_ctx) (translate_typ tau); *) else str); } in let code_items = Bindlib.unbox (translate_code_items { decl_ctx; vars = Var.Map.empty } prgm.code_items) in { code_items; decl_ctx }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>