package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.0.tar.gz
md5=1408a1cce45c7d5990b981e83e7589c2
sha512=eb3b923aa1f743378b4a05e30f50be5d180dc862a716270d747a90e469017f42fa5fc41352f02fbbf59cd2560f91c4f1b32cf38d80085b105d9387b0aed2039d
doc/src/catala.lcalc/closure_conversion.ml.html
Source file closure_conversion.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2022 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Catala_utils open Shared_ast open Ast module D = Dcalc.Ast (** TODO: This version is not yet debugged and ought to be specialized when Lcalc has more structure. *) type 'm ctx = { name_context : string; globally_bound_vars : 'm expr Var.Set.t } (** Returns the expression with closed closures and the set of free variables inside this new expression. Implementation guided by http://gallium.inria.fr/~fpottier/mpri/cours04.pdf#page=9. *) let closure_conversion_expr (type m) (ctx : m ctx) (e : m expr) : m expr boxed = let rec aux e = let m = Marked.get_mark e in match Marked.unmark e with | EStruct _ | EStructAccess _ | ETuple _ | ETupleAccess _ | EInj _ | EArray _ | ELit _ | EAssert _ | EOp _ | EIfThenElse _ | ERaise _ | ECatch _ -> Expr.map_gather ~acc:Var.Set.empty ~join:Var.Set.union ~f:aux e | EVar v -> ( (if Var.Set.mem v ctx.globally_bound_vars then Var.Set.empty else Var.Set.singleton v), (Bindlib.box_var v, m) ) | EMatch { e; cases; name } -> let free_vars, new_e = aux e in (* We do not close the clotures inside the arms of the match expression, since they get a special treatment at compilation to Scalc. *) let free_vars, new_cases = EnumConstructor.Map.fold (fun cons e1 (free_vars, new_cases) -> match Marked.unmark e1 with | EAbs { binder; tys } -> let vars, body = Bindlib.unmbind binder in let new_free_vars, new_body = aux body in let new_binder = Expr.bind vars new_body in ( Var.Set.union free_vars new_free_vars, EnumConstructor.Map.add cons (Expr.eabs new_binder tys (Marked.get_mark e1)) new_cases ) | _ -> failwith "should not happen") cases (free_vars, EnumConstructor.Map.empty) in free_vars, Expr.ematch new_e name new_cases m | EApp { f = EAbs { binder; tys }, e1_pos; args } -> (* let-binding, we should not close these *) let vars, body = Bindlib.unmbind binder in let free_vars, new_body = aux body in let new_binder = Expr.bind vars new_body in let free_vars, new_args = List.fold_right (fun arg (free_vars, new_args) -> let new_free_vars, new_arg = aux arg in Var.Set.union free_vars new_free_vars, new_arg :: new_args) args (free_vars, []) in free_vars, Expr.eapp (Expr.eabs new_binder tys e1_pos) new_args m | EAbs { binder; tys } -> (* λ x.t *) let binder_mark = m in let binder_pos = Expr.mark_pos binder_mark in (* Converting the closure. *) let vars, body = Bindlib.unmbind binder in (* t *) let body_vars, new_body = aux body in (* [[t]] *) let extra_vars = Var.Set.diff body_vars (Var.Set.of_list (Array.to_list vars)) in let extra_vars_list = Var.Set.elements extra_vars in (* x1, ..., xn *) let code_var = Var.make ctx.name_context in (* code *) let inner_c_var = Var.make "env" in let any_ty = TAny, binder_pos in let new_closure_body = Expr.make_multiple_let_in (Array.of_list extra_vars_list) (List.map (fun _ -> any_ty) extra_vars_list) (List.mapi (fun i _ -> Expr.etupleaccess (Expr.evar inner_c_var binder_mark) (i + 1) (List.length extra_vars_list) binder_mark) extra_vars_list) new_body (Expr.mark_pos binder_mark) in let new_closure = Expr.make_abs (Array.concat [Array.make 1 inner_c_var; vars]) new_closure_body ((TAny, binder_pos) :: tys) (Expr.pos e) in ( extra_vars, Expr.make_let_in code_var (TAny, Expr.pos e) new_closure (Expr.etuple ((Bindlib.box_var code_var, binder_mark) :: List.map (fun extra_var -> Bindlib.box_var extra_var, binder_mark) extra_vars_list) m) (Expr.pos e) ) | EApp { f = EOp _, _; _ } -> (* This corresponds to an operator call, which we don't want to transform*) Expr.map_gather ~acc:Var.Set.empty ~join:Var.Set.union ~f:aux e | EApp { f = EVar v, _; _ } when Var.Set.mem v ctx.globally_bound_vars -> (* This corresponds to a scope call, which we don't want to transform*) Expr.map_gather ~acc:Var.Set.empty ~join:Var.Set.union ~f:aux e | EApp { f = e1; args } -> let free_vars, new_e1 = aux e1 in let env_var = Var.make "env" in let code_var = Var.make "code" in let free_vars, new_args = List.fold_right (fun arg (free_vars, new_args) -> let new_free_vars, new_arg = aux arg in Var.Set.union free_vars new_free_vars, new_arg :: new_args) args (free_vars, []) in let call_expr = let m1 = Marked.get_mark e1 in Expr.make_let_in code_var (TAny, Expr.pos e) (Expr.etupleaccess (Bindlib.box_var env_var, m1) 0 (List.length new_args + 1) m) (Expr.eapp (Bindlib.box_var code_var, m1) ((Bindlib.box_var env_var, m1) :: new_args) m) (Expr.pos e) in ( free_vars, Expr.make_let_in env_var (TAny, Expr.pos e) new_e1 call_expr (Expr.pos e) ) in let _vars, e' = aux e in e' let closure_conversion (p : 'm program) : 'm program Bindlib.box = let _, new_code_items = Scope.fold_map ~f:(fun toplevel_vars var code_item -> ( Var.Set.add var toplevel_vars, match code_item with | ScopeDef (name, body) -> let scope_input_var, scope_body_expr = Bindlib.unbind body.scope_body_expr in let ctx = { name_context = Marked.unmark (ScopeName.get_info name); globally_bound_vars = toplevel_vars; } in let new_scope_lets = Scope.map_exprs_in_lets ~f:(closure_conversion_expr ctx) ~varf:(fun v -> v) scope_body_expr in let new_scope_body_expr = Bindlib.bind_var scope_input_var new_scope_lets in Bindlib.box_apply (fun scope_body_expr -> ScopeDef (name, { body with scope_body_expr })) new_scope_body_expr | Topdef (name, ty, expr) -> let ctx = { name_context = Marked.unmark (TopdefName.get_info name); globally_bound_vars = toplevel_vars; } in Bindlib.box_apply (fun e -> Topdef (name, ty, e)) (Expr.Box.lift (closure_conversion_expr ctx expr)) )) ~varf:(fun v -> v) (Var.Set.of_list (List.map Var.translate [handle_default; handle_default_opt])) p.code_items in Bindlib.box_apply (fun new_code_items -> { p with code_items = new_code_items }) new_code_items
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>