package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.6.0.tar.gz
md5=b22e238d5d5c8452067109e9c7c0f427
sha512=ccc8c557c67c2f9d1bed4b957b2367f0f6afc0ef9b8b83237cf2a2912b3e8829b7e8af78ea7fe00b20ecf28b436ad04b591e5fff4f82fd08725d40a18c9924d0
doc/src/catala.scalc/compile_from_lambda.ml.html
Source file compile_from_lambda.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2021 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Utils module A = Ast module L = Lcalc.Ast module D = Dcalc.Ast type ctxt = { func_dict : A.TopLevelName.t L.VarMap.t; decl_ctx : D.decl_ctx; var_dict : A.LocalName.t L.VarMap.t; inside_definition_of : A.LocalName.t option; } (* Expressions can spill out side effect, hence this function also returns a list of statements to be prepended before the expression is evaluated *) let rec translate_expr (ctxt : ctxt) (expr : L.expr Pos.marked) : A.block * A.expr Pos.marked = match Pos.unmark expr with | L.EVar v -> let local_var = try A.EVar (L.VarMap.find (Pos.unmark v) ctxt.var_dict) with Not_found -> A.EFunc (L.VarMap.find (Pos.unmark v) ctxt.func_dict) in ([], (local_var, Pos.get_position v)) | L.ETuple (args, Some s_name) -> let args_stmts, new_args = List.fold_left (fun (args_stmts, new_args) arg -> let arg_stmts, new_arg = translate_expr ctxt arg in (arg_stmts @ args_stmts, new_arg :: new_args)) ([], []) args in let new_args = List.rev new_args in let args_stmts = List.rev args_stmts in (args_stmts, (A.EStruct (new_args, s_name), Pos.get_position expr)) | L.ETuple (_, None) -> failwith "Non-struct tuples cannot be compiled to scalc" | L.ETupleAccess (e1, num_field, Some s_name, _) -> let e1_stmts, new_e1 = translate_expr ctxt e1 in let field_name = fst (List.nth (D.StructMap.find s_name ctxt.decl_ctx.ctx_structs) num_field) in (e1_stmts, (A.EStructFieldAccess (new_e1, field_name, s_name), Pos.get_position expr)) | L.ETupleAccess (_, _, None, _) -> failwith "Non-struct tuples cannot be compiled to scalc" | L.EInj (e1, num_cons, e_name, _) -> let e1_stmts, new_e1 = translate_expr ctxt e1 in let cons_name = fst (List.nth (D.EnumMap.find e_name ctxt.decl_ctx.ctx_enums) num_cons) in (e1_stmts, (A.EInj (new_e1, cons_name, e_name), Pos.get_position expr)) | L.EApp (f, args) -> let f_stmts, new_f = translate_expr ctxt f in let args_stmts, new_args = List.fold_left (fun (args_stmts, new_args) arg -> let arg_stmts, new_arg = translate_expr ctxt arg in (arg_stmts @ args_stmts, new_arg :: new_args)) ([], []) args in let new_args = List.rev new_args in (f_stmts @ args_stmts, (A.EApp (new_f, new_args), Pos.get_position expr)) | L.EArray args -> let args_stmts, new_args = List.fold_left (fun (args_stmts, new_args) arg -> let arg_stmts, new_arg = translate_expr ctxt arg in (arg_stmts @ args_stmts, new_arg :: new_args)) ([], []) args in let new_args = List.rev new_args in (args_stmts, (A.EArray new_args, Pos.get_position expr)) | L.EOp op -> ([], (A.EOp op, Pos.get_position expr)) | L.ELit l -> ([], (A.ELit l, Pos.get_position expr)) | _ -> let tmp_var = A.LocalName.fresh ("local_var", Pos.get_position expr) in let ctxt = { ctxt with inside_definition_of = Some tmp_var } in let tmp_stmts = translate_statements ctxt expr in ( ( A.SLocalDecl ((tmp_var, Pos.get_position expr), (D.TAny, Pos.get_position expr)), Pos.get_position expr ) :: tmp_stmts, (A.EVar tmp_var, Pos.get_position expr) ) and translate_statements (ctxt : ctxt) (block_expr : L.expr Pos.marked) : A.block = match Pos.unmark block_expr with | L.EApp ((L.EAbs ((binder, _), [ (D.TLit D.TUnit, _) ]), _), [ (L.EAssert e, _) ]) -> (* Assertions are always encapsulated in a unit-typed let binding *) let _, body = Bindlib.unmbind binder in let e_stmts, new_e = translate_expr ctxt e in e_stmts @ (A.SAssert (Pos.unmark new_e), Pos.get_position block_expr) :: translate_statements ctxt body | L.EApp ((L.EAbs ((binder, binder_pos), taus), eabs_pos), args) -> (* This defines multiple local variables at the time *) let vars, body = Bindlib.unmbind binder in let vars_tau = List.map2 (fun x tau -> (x, tau)) (Array.to_list vars) taus in let ctxt = { ctxt with var_dict = List.fold_left (fun var_dict (x, _) -> L.VarMap.add x (A.LocalName.fresh (Bindlib.name_of x, binder_pos)) var_dict) ctxt.var_dict vars_tau; } in let local_decls = List.map (fun (x, tau) -> (A.SLocalDecl ((L.VarMap.find x ctxt.var_dict, binder_pos), tau), eabs_pos)) vars_tau in let vars_args = List.map2 (fun (x, tau) arg -> ((L.VarMap.find x ctxt.var_dict, binder_pos), tau, arg)) vars_tau args in let def_blocks = List.map (fun (x, _tau, arg) -> let ctxt = { ctxt with inside_definition_of = Some (Pos.unmark x) } in let arg_stmts, new_arg = translate_expr ctxt arg in arg_stmts @ [ (A.SLocalDef (x, new_arg), binder_pos) ]) vars_args in let rest_of_block = translate_statements ctxt body in local_decls @ List.flatten def_blocks @ rest_of_block | L.EAbs ((binder, binder_pos), taus) -> let vars, body = Bindlib.unmbind binder in let vars_tau = List.map2 (fun x tau -> (x, tau)) (Array.to_list vars) taus in let closure_name = match ctxt.inside_definition_of with | None -> A.LocalName.fresh ("closure", Pos.get_position block_expr) | Some x -> x in let ctxt = { ctxt with var_dict = List.fold_left (fun var_dict (x, _) -> L.VarMap.add x (A.LocalName.fresh (Bindlib.name_of x, binder_pos)) var_dict) ctxt.var_dict vars_tau; inside_definition_of = None; } in let new_body = translate_statements ctxt body in [ ( A.SInnerFuncDef ( (closure_name, binder_pos), { func_params = List.map (fun (var, tau) -> ((L.VarMap.find var ctxt.var_dict, binder_pos), tau)) vars_tau; func_body = new_body; } ), binder_pos ); ] | L.EMatch (e1, args, e_name) -> let e1_stmts, new_e1 = translate_expr ctxt e1 in let new_args = List.fold_left (fun new_args arg -> match Pos.unmark arg with | L.EAbs ((binder, pos_binder), _) -> let vars, body = Bindlib.unmbind binder in assert (Array.length vars = 1); let var = vars.(0) in let scalc_var = A.LocalName.fresh (Bindlib.name_of var, pos_binder) in let ctxt = { ctxt with var_dict = L.VarMap.add var scalc_var ctxt.var_dict } in let new_arg = translate_statements ctxt body in (new_arg, scalc_var) :: new_args | _ -> assert false (* should not happen *)) [] args in let new_args = List.rev new_args in e1_stmts @ [ (A.SSwitch (new_e1, e_name, new_args), Pos.get_position block_expr) ] | L.EIfThenElse (cond, e_true, e_false) -> let cond_stmts, s_cond = translate_expr ctxt cond in let s_e_true = translate_statements ctxt e_true in let s_e_false = translate_statements ctxt e_false in cond_stmts @ [ (A.SIfThenElse (s_cond, s_e_true, s_e_false), Pos.get_position block_expr) ] | L.ECatch (e_try, except, e_catch) -> let s_e_try = translate_statements ctxt e_try in let s_e_catch = translate_statements ctxt e_catch in [ (A.STryExcept (s_e_try, except, s_e_catch), Pos.get_position block_expr) ] | L.ERaise except -> [ (A.SRaise except, Pos.get_position block_expr) ] | _ -> ( let e_stmts, new_e = translate_expr ctxt block_expr in e_stmts @ match e_stmts with | (A.SRaise _, _) :: _ -> (* if the last statement raises an exception, then we don't need to return or to define the current variable since this code will be unreachable *) [] | _ -> [ ( (match ctxt.inside_definition_of with | None -> A.SReturn (Pos.unmark new_e) | Some x -> A.SLocalDef (Pos.same_pos_as x new_e, new_e)), Pos.get_position block_expr ); ]) let translate_scope (decl_ctx : D.decl_ctx) (func_dict : A.TopLevelName.t L.VarMap.t) (scope_expr : L.expr Pos.marked) : (A.LocalName.t Pos.marked * D.typ Pos.marked) list * A.block = match Pos.unmark scope_expr with | L.EAbs ((binder, binder_pos), typs) -> let vars, body = Bindlib.unmbind binder in let var_dict = Array.fold_left (fun var_dict var -> L.VarMap.add var (A.LocalName.fresh (Bindlib.name_of var, binder_pos)) var_dict) L.VarMap.empty vars in let param_list = List.map2 (fun var typ -> ((L.VarMap.find var var_dict, binder_pos), typ)) (Array.to_list vars) typs in let new_body = translate_statements { decl_ctx; func_dict; var_dict; inside_definition_of = None } body in (param_list, new_body) | _ -> assert false (* should not happen *) let translate_program (p : L.program) : A.program = { decl_ctx = p.L.decl_ctx; scopes = (let _, new_scopes = List.fold_left (fun (func_dict, new_scopes) body -> let new_scope_params, new_scope_body = translate_scope p.decl_ctx func_dict body.Lcalc.Ast.scope_body_expr in let func_id = A.TopLevelName.fresh (Bindlib.name_of body.Lcalc.Ast.scope_body_var, Pos.no_pos) in let func_dict = L.VarMap.add body.Lcalc.Ast.scope_body_var func_id func_dict in ( func_dict, { Ast.scope_body_name = body.Lcalc.Ast.scope_body_name; Ast.scope_body_var = func_id; scope_body_func = { A.func_params = new_scope_params; A.func_body = new_scope_body }; } :: new_scopes )) ( (if !Cli.avoid_exceptions_flag then L.VarMap.singleton L.handle_default_opt (A.TopLevelName.fresh ("handle_default_opt", Pos.no_pos)) else L.VarMap.singleton L.handle_default (A.TopLevelName.fresh ("handle_default", Pos.no_pos))), [] ) p.L.scopes in List.rev new_scopes); }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>