package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.6.0.tar.gz
md5=b22e238d5d5c8452067109e9c7c0f427
sha512=ccc8c557c67c2f9d1bed4b957b2367f0f6afc0ef9b8b83237cf2a2912b3e8829b7e8af78ea7fe00b20ecf28b436ad04b591e5fff4f82fd08725d40a18c9924d0
doc/src/catala.desugared/ast.ml.html
Source file ast.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Nicolas Chataing <nicolas.chataing@ens.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** Abstract syntax tree of the desugared representation *) open Utils (** {1 Names, Maps and Keys} *) module IdentMap : Map.S with type key = String.t = Map.Make (String) module RuleName : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module RuleMap : Map.S with type key = RuleName.t = Map.Make (RuleName) module RuleSet : Set.S with type elt = RuleName.t = Set.Make (RuleName) module LabelName : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module LabelMap : Map.S with type key = LabelName.t = Map.Make (LabelName) module LabelSet : Set.S with type elt = LabelName.t = Set.Make (LabelName) module StateName : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module ScopeVar : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module ScopeVarSet : Set.S with type elt = ScopeVar.t = Set.Make (ScopeVar) module ScopeVarMap : Map.S with type key = ScopeVar.t = Map.Make (ScopeVar) (** Inside a scope, a definition can refer either to a scope def, or a subscope def *) module ScopeDef = struct type t = | Var of ScopeVar.t * StateName.t option | SubScopeVar of Scopelang.Ast.SubScopeName.t * ScopeVar.t (** In this case, the [ScopeVar.t] lives inside the context of the subscope's original declaration *) let compare x y = match (x, y) with | Var (x, None), Var (y, None) | Var (x, Some _), Var (y, None) | Var (x, None), Var (y, Some _) | Var (x, _), SubScopeVar (_, y) | SubScopeVar (_, x), Var (y, _) -> ScopeVar.compare x y | Var (x, Some sx), Var (y, Some sy) -> let cmp = ScopeVar.compare x y in if cmp = 0 then StateName.compare sx sy else cmp | SubScopeVar (x', x), SubScopeVar (y', y) -> let cmp = Scopelang.Ast.SubScopeName.compare x' y' in if cmp = 0 then ScopeVar.compare x y else cmp let get_position x = match x with | Var (x, None) -> Pos.get_position (ScopeVar.get_info x) | Var (_, Some sx) -> Pos.get_position (StateName.get_info sx) | SubScopeVar (x, _) -> Pos.get_position (Scopelang.Ast.SubScopeName.get_info x) let format_t fmt x = match x with | Var (v, None) -> ScopeVar.format_t fmt v | Var (v, Some sv) -> Format.fprintf fmt "%a.%a" ScopeVar.format_t v StateName.format_t sv | SubScopeVar (s, v) -> Format.fprintf fmt "%a.%a" Scopelang.Ast.SubScopeName.format_t s ScopeVar.format_t v let hash x = match x with | Var (v, None) -> ScopeVar.hash v | Var (v, Some sv) -> Int.logxor (ScopeVar.hash v) (StateName.hash sv) | SubScopeVar (w, v) -> Int.logxor (Scopelang.Ast.SubScopeName.hash w) (ScopeVar.hash v) end module ScopeDefMap : Map.S with type key = ScopeDef.t = Map.Make (ScopeDef) module ScopeDefSet : Set.S with type elt = ScopeDef.t = Set.Make (ScopeDef) (** {1 AST} *) type location = | ScopeVar of ScopeVar.t Pos.marked * StateName.t option | SubScopeVar of Scopelang.Ast.ScopeName.t * Scopelang.Ast.SubScopeName.t Pos.marked * ScopeVar.t Pos.marked module LocationSet : Set.S with type elt = location Pos.marked = Set.Make (struct type t = location Pos.marked let compare x y = match (Pos.unmark x, Pos.unmark y) with | ScopeVar (vx, None), ScopeVar (vy, None) | ScopeVar (vx, Some _), ScopeVar (vy, None) | ScopeVar (vx, None), ScopeVar (vy, Some _) -> ScopeVar.compare (Pos.unmark vx) (Pos.unmark vy) | ScopeVar ((x, _), Some sx), ScopeVar ((y, _), Some sy) -> let cmp = ScopeVar.compare x y in if cmp = 0 then StateName.compare sx sy else cmp | SubScopeVar (_, (xsubindex, _), (xsubvar, _)), SubScopeVar (_, (ysubindex, _), (ysubvar, _)) -> let c = Scopelang.Ast.SubScopeName.compare xsubindex ysubindex in if c = 0 then ScopeVar.compare xsubvar ysubvar else c | ScopeVar _, SubScopeVar _ -> -1 | SubScopeVar _, ScopeVar _ -> 1 end) (** The expressions use the {{:https://lepigre.fr/ocaml-bindlib/} Bindlib} library, based on higher-order abstract syntax*) type expr = | ELocation of location | EVar of expr Bindlib.var Pos.marked | EStruct of Scopelang.Ast.StructName.t * expr Pos.marked Scopelang.Ast.StructFieldMap.t | EStructAccess of expr Pos.marked * Scopelang.Ast.StructFieldName.t * Scopelang.Ast.StructName.t | EEnumInj of expr Pos.marked * Scopelang.Ast.EnumConstructor.t * Scopelang.Ast.EnumName.t | EMatch of expr Pos.marked * Scopelang.Ast.EnumName.t * expr Pos.marked Scopelang.Ast.EnumConstructorMap.t | ELit of Dcalc.Ast.lit | EAbs of (expr, expr Pos.marked) Bindlib.mbinder Pos.marked * Scopelang.Ast.typ Pos.marked list | EApp of expr Pos.marked * expr Pos.marked list | EOp of Dcalc.Ast.operator | EDefault of expr Pos.marked list * expr Pos.marked * expr Pos.marked | EIfThenElse of expr Pos.marked * expr Pos.marked * expr Pos.marked | EArray of expr Pos.marked list | ErrorOnEmpty of expr Pos.marked module Var = struct type t = expr Bindlib.var let make (s : string Pos.marked) : t = Bindlib.new_var (fun (x : expr Bindlib.var) : expr -> EVar (x, Pos.get_position s)) (Pos.unmark s) let compare x y = Bindlib.compare_vars x y end type vars = expr Bindlib.mvar type rule = { rule_id : RuleName.t; rule_just : expr Pos.marked Bindlib.box; rule_cons : expr Pos.marked Bindlib.box; rule_parameter : (Var.t * Scopelang.Ast.typ Pos.marked) option; rule_exception_to_rules : RuleSet.t Pos.marked; } let empty_rule (pos : Pos.t) (have_parameter : Scopelang.Ast.typ Pos.marked option) : rule = { rule_just = Bindlib.box (ELit (Dcalc.Ast.LBool false), pos); rule_cons = Bindlib.box (ELit Dcalc.Ast.LEmptyError, pos); rule_parameter = (match have_parameter with Some typ -> Some (Var.make ("dummy", pos), typ) | None -> None); rule_exception_to_rules = (RuleSet.empty, pos); rule_id = RuleName.fresh ("empty", pos); } let always_false_rule (pos : Pos.t) (have_parameter : Scopelang.Ast.typ Pos.marked option) : rule = { rule_just = Bindlib.box (ELit (Dcalc.Ast.LBool true), pos); rule_cons = Bindlib.box (ELit (Dcalc.Ast.LBool false), pos); rule_parameter = (match have_parameter with Some typ -> Some (Var.make ("dummy", pos), typ) | None -> None); rule_exception_to_rules = (RuleSet.empty, pos); rule_id = RuleName.fresh ("always_false", pos); } type assertion = expr Pos.marked Bindlib.box type variation_typ = Increasing | Decreasing type reference_typ = Decree | Law type meta_assertion = | FixedBy of reference_typ Pos.marked | VariesWith of unit * variation_typ Pos.marked option type scope_def = { scope_def_rules : rule RuleMap.t; scope_def_typ : Scopelang.Ast.typ Pos.marked; scope_def_is_condition : bool; scope_def_io : Scopelang.Ast.io; scope_def_label_groups : RuleSet.t LabelMap.t; } type var_or_states = WholeVar | States of StateName.t list type scope = { scope_vars : var_or_states ScopeVarMap.t; scope_sub_scopes : Scopelang.Ast.ScopeName.t Scopelang.Ast.SubScopeMap.t; scope_uid : Scopelang.Ast.ScopeName.t; scope_defs : scope_def ScopeDefMap.t; scope_assertions : assertion list; scope_meta_assertions : meta_assertion list; } type program = { program_scopes : scope Scopelang.Ast.ScopeMap.t; program_enums : Scopelang.Ast.enum_ctx; program_structs : Scopelang.Ast.struct_ctx; } let rec locations_used (e : expr Pos.marked) : LocationSet.t = match Pos.unmark e with | ELocation l -> LocationSet.singleton (l, Pos.get_position e) | EVar _ | ELit _ | EOp _ -> LocationSet.empty | EAbs ((binder, _), _) -> let _, body = Bindlib.unmbind binder in locations_used body | EStruct (_, es) -> Scopelang.Ast.StructFieldMap.fold (fun _ e' acc -> LocationSet.union acc (locations_used e')) es LocationSet.empty | EStructAccess (e1, _, _) -> locations_used e1 | EEnumInj (e1, _, _) -> locations_used e1 | EMatch (e1, _, es) -> Scopelang.Ast.EnumConstructorMap.fold (fun _ e' acc -> LocationSet.union acc (locations_used e')) es (locations_used e1) | EApp (e1, args) -> List.fold_left (fun acc arg -> LocationSet.union (locations_used arg) acc) (locations_used e1) args | EIfThenElse (e1, e2, e3) -> LocationSet.union (locations_used e1) (LocationSet.union (locations_used e2) (locations_used e3)) | EDefault (excepts, just, cons) -> List.fold_left (fun acc except -> LocationSet.union (locations_used except) acc) (LocationSet.union (locations_used just) (locations_used cons)) excepts | EArray es -> List.fold_left (fun acc e' -> LocationSet.union acc (locations_used e')) LocationSet.empty es | ErrorOnEmpty e' -> locations_used e' let free_variables (def : rule RuleMap.t) : Pos.t ScopeDefMap.t = let add_locs (acc : Pos.t ScopeDefMap.t) (locs : LocationSet.t) : Pos.t ScopeDefMap.t = LocationSet.fold (fun (loc, loc_pos) acc -> ScopeDefMap.add (match loc with | ScopeVar (v, st) -> ScopeDef.Var (Pos.unmark v, st) | SubScopeVar (_, sub_index, sub_var) -> ScopeDef.SubScopeVar (Pos.unmark sub_index, Pos.unmark sub_var)) loc_pos acc) locs acc in RuleMap.fold (fun _ rule acc -> let locs = LocationSet.union (locations_used (Bindlib.unbox rule.rule_just)) (locations_used (Bindlib.unbox rule.rule_cons)) in add_locs acc locs) def ScopeDefMap.empty let make_var ((x, pos) : Var.t Pos.marked) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun v -> (v, pos)) (Bindlib.box_var x) let make_abs (xs : vars) (e : expr Pos.marked Bindlib.box) (pos_binder : Pos.t) (taus : Scopelang.Ast.typ Pos.marked list) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun b -> (EAbs ((b, pos_binder), taus), pos)) (Bindlib.bind_mvar xs e) let make_app (e : expr Pos.marked Bindlib.box) (u : expr Pos.marked Bindlib.box list) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply2 (fun e u -> (EApp (e, u), pos)) e (Bindlib.box_list u) let make_let_in (x : Var.t) (tau : Scopelang.Ast.typ Pos.marked) (e1 : expr Pos.marked Bindlib.box) (e2 : expr Pos.marked Bindlib.box) : expr Pos.marked Bindlib.box = Bindlib.box_apply2 (fun e u -> (EApp (e, u), Pos.get_position (Bindlib.unbox e2))) (make_abs (Array.of_list [ x ]) e2 (Pos.get_position (Bindlib.unbox e2)) [ tau ] (Pos.get_position (Bindlib.unbox e2))) (Bindlib.box_list [ e1 ]) module VarMap = Map.Make (Var)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>