package catala
Low-level language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.3.0.tar.gz
md5=4a2c5495f30d8fc2e3bf977df6e602f9
sha512=8dcc404b6068b9dbd76982ade60d8fba1950fdd0a8a626db17429120483367dce1f51997e96d7b8ee5308f305c3bcbb897ef85336f25e9ef3681f4cb9237f56a
doc/src/catala.scopelang/scope_to_dcalc.ml.html
Source file scope_to_dcalc.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Utils type scope_sigs_ctx = (* list of scope variables with their types *) ( (Ast.ScopeVar.t * Dcalc.Ast.typ) list * (* var representing the scope *) Dcalc.Ast.Var.t * (* var representing the scope input inside the scope func *) Dcalc.Ast.Var.t * (* scope input *) Ast.StructName.t * (* scope output *) Ast.StructName.t ) Ast.ScopeMap.t type ctx = { structs : Ast.struct_ctx; enums : Ast.enum_ctx; scope_name : Ast.ScopeName.t; scopes_parameters : scope_sigs_ctx; scope_vars : (Dcalc.Ast.Var.t * Dcalc.Ast.typ) Ast.ScopeVarMap.t; subscope_vars : (Dcalc.Ast.Var.t * Dcalc.Ast.typ) Ast.ScopeVarMap.t Ast.SubScopeMap.t; local_vars : Dcalc.Ast.Var.t Ast.VarMap.t; } let empty_ctx (struct_ctx : Ast.struct_ctx) (enum_ctx : Ast.enum_ctx) (scopes_ctx : scope_sigs_ctx) (scope_name : Ast.ScopeName.t) = { structs = struct_ctx; enums = enum_ctx; scope_name; scopes_parameters = scopes_ctx; scope_vars = Ast.ScopeVarMap.empty; subscope_vars = Ast.SubScopeMap.empty; local_vars = Ast.VarMap.empty; } let rec translate_typ (ctx : ctx) (t : Ast.typ Pos.marked) : Dcalc.Ast.typ Pos.marked = Pos.same_pos_as ( match Pos.unmark t with | Ast.TLit l -> Dcalc.Ast.TLit l | Ast.TArrow (t1, t2) -> Dcalc.Ast.TArrow (translate_typ ctx t1, translate_typ ctx t2) | Ast.TStruct s_uid -> let s_fields = Ast.StructMap.find s_uid ctx.structs in Dcalc.Ast.TTuple (List.map (fun (_, t) -> translate_typ ctx t) s_fields, Some s_uid) | Ast.TEnum e_uid -> let e_cases = Ast.EnumMap.find e_uid ctx.enums in Dcalc.Ast.TEnum (List.map (fun (_, t) -> translate_typ ctx t) e_cases, e_uid) | Ast.TArray t1 -> Dcalc.Ast.TArray (translate_typ ctx (Pos.same_pos_as t1 t)) | Ast.TAny -> Dcalc.Ast.TAny ) t let merge_defaults (caller : Dcalc.Ast.expr Pos.marked Bindlib.box) (callee : Dcalc.Ast.expr Pos.marked Bindlib.box) : Dcalc.Ast.expr Pos.marked Bindlib.box = let caller = Dcalc.Ast.make_app caller [ Bindlib.box (Dcalc.Ast.ELit Dcalc.Ast.LUnit, Pos.no_pos) ] Pos.no_pos in let body = Bindlib.box_apply2 (fun caller callee -> ( Dcalc.Ast.EDefault ([ caller ], (Dcalc.Ast.ELit (Dcalc.Ast.LBool true), Pos.no_pos), callee), Pos.no_pos )) caller callee in body let tag_with_log_entry (e : Dcalc.Ast.expr Pos.marked Bindlib.box) (l : Dcalc.Ast.log_entry) (markings : Utils.Uid.MarkedString.info list) : Dcalc.Ast.expr Pos.marked Bindlib.box = Bindlib.box_apply (fun e -> ( Dcalc.Ast.EApp ((Dcalc.Ast.EOp (Dcalc.Ast.Unop (Dcalc.Ast.Log (l, markings))), Pos.get_position e), [ e ]), Pos.get_position e )) e let rec translate_expr (ctx : ctx) (e : Ast.expr Pos.marked) : Dcalc.Ast.expr Pos.marked Bindlib.box = Bindlib.box_apply (fun (x : Dcalc.Ast.expr) -> Pos.same_pos_as x e) ( match Pos.unmark e with | EVar v -> Bindlib.box_var (Ast.VarMap.find (Pos.unmark v) ctx.local_vars) | ELit l -> Bindlib.box (Dcalc.Ast.ELit l) | EStruct (struct_name, e_fields) -> let struct_sig = Ast.StructMap.find struct_name ctx.structs in let d_fields, remaining_e_fields = List.fold_right (fun (field_name, _) (d_fields, e_fields) -> let field_e = try Ast.StructFieldMap.find field_name e_fields with Not_found -> Errors.raise_spanned_error (Format.asprintf "Missing field for structure %a: \"%a\"" Ast.StructName.format_t struct_name Ast.StructFieldName.format_t field_name) (Pos.get_position e) in let field_d = translate_expr ctx field_e in (field_d :: d_fields, Ast.StructFieldMap.remove field_name e_fields)) struct_sig ([], e_fields) in if Ast.StructFieldMap.cardinal remaining_e_fields > 0 then Errors.raise_spanned_error (Format.asprintf "The fields \"%a\" do not belong to the structure %a" Ast.StructName.format_t struct_name (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt ", ") (fun fmt (field_name, _) -> Format.fprintf fmt "%a" Ast.StructFieldName.format_t field_name)) (Ast.StructFieldMap.bindings remaining_e_fields)) (Pos.get_position e) else Bindlib.box_apply (fun d_fields -> Dcalc.Ast.ETuple (d_fields, Some struct_name)) (Bindlib.box_list d_fields) | EStructAccess (e1, field_name, struct_name) -> let struct_sig = Ast.StructMap.find struct_name ctx.structs in let _, field_index = try List.assoc field_name (List.mapi (fun i (x, y) -> (x, (y, i))) struct_sig) with Not_found -> Errors.raise_spanned_error (Format.asprintf "The field \"%a\" does not belong to the structure %a" Ast.StructFieldName.format_t field_name Ast.StructName.format_t struct_name) (Pos.get_position e) in let e1 = translate_expr ctx e1 in Bindlib.box_apply (fun e1 -> Dcalc.Ast.ETupleAccess ( e1, field_index, Some struct_name, List.map (fun (_, t) -> translate_typ ctx t) struct_sig )) e1 | EEnumInj (e1, constructor, enum_name) -> let enum_sig = Ast.EnumMap.find enum_name ctx.enums in let _, constructor_index = try List.assoc constructor (List.mapi (fun i (x, y) -> (x, (y, i))) enum_sig) with Not_found -> Errors.raise_spanned_error (Format.asprintf "The constructor \"%a\" does not belong to the enum %a" Ast.EnumConstructor.format_t constructor Ast.EnumName.format_t enum_name) (Pos.get_position e) in let e1 = translate_expr ctx e1 in Bindlib.box_apply (fun e1 -> Dcalc.Ast.EInj ( e1, constructor_index, enum_name, List.map (fun (_, t) -> translate_typ ctx t) enum_sig )) e1 | EMatch (e1, enum_name, cases) -> let enum_sig = Ast.EnumMap.find enum_name ctx.enums in let d_cases, remaining_e_cases = List.fold_right (fun (constructor, _) (d_cases, e_cases) -> let case_e = try Ast.EnumConstructorMap.find constructor e_cases with Not_found -> Errors.raise_spanned_error (Format.asprintf "The constructor %a of enum %a is missing from this pattern matching" Ast.EnumConstructor.format_t constructor Ast.EnumName.format_t enum_name) (Pos.get_position e) in let case_d = translate_expr ctx case_e in (case_d :: d_cases, Ast.EnumConstructorMap.remove constructor e_cases)) enum_sig ([], cases) in if Ast.EnumConstructorMap.cardinal remaining_e_cases > 0 then Errors.raise_spanned_error (Format.asprintf "Patter matching is incomplete for enum %a: missing cases %a" Ast.EnumName.format_t enum_name (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt ", ") (fun fmt (case_name, _) -> Format.fprintf fmt "%a" Ast.EnumConstructor.format_t case_name)) (Ast.EnumConstructorMap.bindings remaining_e_cases)) (Pos.get_position e) else let e1 = translate_expr ctx e1 in Bindlib.box_apply2 (fun d_fields e1 -> Dcalc.Ast.EMatch (e1, d_fields, enum_name)) (Bindlib.box_list d_cases) e1 | EApp (e1, args) -> (* We insert various log calls to record arguments and outputs of user-defined functions belonging to scopes *) let e1_func = translate_expr ctx e1 in let markings l = match l with | Ast.ScopeVar (v, _) -> [ Ast.ScopeName.get_info ctx.scope_name; Ast.ScopeVar.get_info v ] | Ast.SubScopeVar (s, _, (v, _)) -> [ Ast.ScopeName.get_info s; Ast.ScopeVar.get_info v ] in let e1_func = match Pos.unmark e1 with | ELocation l -> tag_with_log_entry e1_func Dcalc.Ast.BeginCall (markings l) | _ -> e1_func in let new_args = List.map (translate_expr ctx) args in let new_args = match (Pos.unmark e1, new_args) with | ELocation l, [ new_arg ] -> [ tag_with_log_entry new_arg Dcalc.Ast.VarDef (markings l @ [ Pos.same_pos_as "input" e ]); ] | _ -> new_args in let new_e = Bindlib.box_apply2 (fun e' u -> (Dcalc.Ast.EApp (e', u), Pos.get_position e)) e1_func (Bindlib.box_list new_args) in let new_e = match Pos.unmark e1 with | ELocation l -> tag_with_log_entry (tag_with_log_entry new_e Dcalc.Ast.VarDef (markings l @ [ Pos.same_pos_as "output" e ])) Dcalc.Ast.EndCall (markings l) | _ -> new_e in Bindlib.box_apply Pos.unmark new_e | EAbs (pos_binder, binder, typ) -> let xs, body = Bindlib.unmbind binder in let new_xs = Array.map (fun x -> Dcalc.Ast.Var.make (Bindlib.name_of x, Pos.no_pos)) xs in let both_xs = Array.map2 (fun x new_x -> (x, new_x)) xs new_xs in let body = translate_expr { ctx with local_vars = Array.fold_left (fun local_vars (x, new_x) -> Ast.VarMap.add x new_x local_vars) ctx.local_vars both_xs; } body in let binder = Bindlib.bind_mvar new_xs body in Bindlib.box_apply (fun b -> Dcalc.Ast.EAbs (pos_binder, b, List.map (translate_typ ctx) typ)) binder | EDefault (excepts, just, cons) -> let just = tag_with_log_entry (translate_expr ctx just) Dcalc.Ast.PosRecordIfTrueBool [] in Bindlib.box_apply3 (fun e j c -> Dcalc.Ast.EDefault (e, j, c)) (Bindlib.box_list (List.map (translate_expr ctx) excepts)) just (translate_expr ctx cons) | ELocation (ScopeVar a) -> Bindlib.box_var (fst (Ast.ScopeVarMap.find (Pos.unmark a) ctx.scope_vars)) | ELocation (SubScopeVar (_, s, a)) -> ( try Bindlib.box_var (fst (Ast.ScopeVarMap.find (Pos.unmark a) (Ast.SubScopeMap.find (Pos.unmark s) ctx.subscope_vars))) with Not_found -> Errors.raise_spanned_error (Format.asprintf "The variable %a.%a cannot be used here,\n\ as subscope %a's results will not have been computed yet" Ast.SubScopeName.format_t (Pos.unmark s) Ast.ScopeVar.format_t (Pos.unmark a) Ast.SubScopeName.format_t (Pos.unmark s)) (Pos.get_position e) ) | EIfThenElse (cond, et, ef) -> Bindlib.box_apply3 (fun c t f -> Dcalc.Ast.EIfThenElse (c, t, f)) (translate_expr ctx cond) (translate_expr ctx et) (translate_expr ctx ef) | EOp op -> Bindlib.box (Dcalc.Ast.EOp op) | EArray es -> Bindlib.box_apply (fun es -> Dcalc.Ast.EArray es) (Bindlib.box_list (List.map (translate_expr ctx) es)) ) let rec translate_rule (ctx : ctx) (rule : Ast.rule) (rest : Ast.rule list) ((sigma_name, pos_sigma) : Utils.Uid.MarkedString.info) (sigma_return_struct_name : Ast.StructName.t) : Dcalc.Ast.expr Pos.marked Bindlib.box * ctx = match rule with | Definition ((ScopeVar a, var_def_pos), tau, e) -> let a_name = Ast.ScopeVar.get_info (Pos.unmark a) in let a_var = Dcalc.Ast.Var.make a_name in let tau = translate_typ ctx tau in let new_ctx = { ctx with scope_vars = Ast.ScopeVarMap.add (Pos.unmark a) (a_var, Pos.unmark tau) ctx.scope_vars; } in let next_e, new_ctx = translate_rules new_ctx rest (sigma_name, pos_sigma) sigma_return_struct_name in let new_e = translate_expr ctx e in let a_expr = Dcalc.Ast.make_var (a_var, var_def_pos) in let merged_expr = Bindlib.box_apply (fun merged_expr -> ( Dcalc.Ast.EApp ( (Dcalc.Ast.EOp (Dcalc.Ast.Unop Dcalc.Ast.ErrorOnEmpty), Pos.get_position a_name), [ merged_expr ] ), Pos.get_position merged_expr )) (merge_defaults a_expr new_e) in let merged_expr = tag_with_log_entry merged_expr Dcalc.Ast.VarDef [ (sigma_name, pos_sigma); a_name ] in let next_e = Dcalc.Ast.make_let_in a_var tau merged_expr next_e in (next_e, new_ctx) | Definition ((SubScopeVar (_subs_name, subs_index, subs_var), var_def_pos), tau, e) -> let a_name = Pos.map_under_mark (fun str -> str ^ "." ^ Pos.unmark (Ast.ScopeVar.get_info (Pos.unmark subs_var))) (Ast.SubScopeName.get_info (Pos.unmark subs_index)) in let a_var = (Dcalc.Ast.Var.make a_name, var_def_pos) in let tau = translate_typ ctx tau in let new_ctx = { ctx with subscope_vars = Ast.SubScopeMap.update (Pos.unmark subs_index) (fun map -> match map with | Some map -> Some (Ast.ScopeVarMap.add (Pos.unmark subs_var) (Pos.unmark a_var, Pos.unmark tau) map) | None -> Some (Ast.ScopeVarMap.singleton (Pos.unmark subs_var) (Pos.unmark a_var, Pos.unmark tau))) ctx.subscope_vars; } in let next_e, new_ctx = translate_rules new_ctx rest (sigma_name, pos_sigma) sigma_return_struct_name in let intermediate_e = Dcalc.Ast.make_abs (Array.of_list [ Pos.unmark a_var ]) next_e var_def_pos [ (Dcalc.Ast.TArrow ((TLit TUnit, var_def_pos), tau), var_def_pos) ] (Pos.get_position e) in let new_e = tag_with_log_entry (translate_expr ctx e) Dcalc.Ast.VarDef [ (sigma_name, pos_sigma); a_name ] in let silent_var = Dcalc.Ast.Var.make ("_", Pos.no_pos) in let thunked_new_e = Dcalc.Ast.make_abs (Array.of_list [ silent_var ]) new_e var_def_pos [ (Dcalc.Ast.TLit TUnit, var_def_pos) ] var_def_pos in let out_e = Dcalc.Ast.make_app intermediate_e [ thunked_new_e ] (Pos.get_position e) in (out_e, new_ctx) | Call (subname, subindex) -> let ( all_subscope_vars, scope_dcalc_var, _, called_scope_input_struct, called_scope_return_struct ) = Ast.ScopeMap.find subname ctx.scopes_parameters in let subscope_vars_defined = try Ast.SubScopeMap.find subindex ctx.subscope_vars with Not_found -> Ast.ScopeVarMap.empty in let subscope_var_not_yet_defined subvar = not (Ast.ScopeVarMap.mem subvar subscope_vars_defined) in let pos_call = Pos.get_position (Ast.SubScopeName.get_info subindex) in let subscope_args = List.map (fun (subvar, _) -> if subscope_var_not_yet_defined subvar then Bindlib.box Dcalc.Interpreter.empty_thunked_term else let a_var, _ = Ast.ScopeVarMap.find subvar subscope_vars_defined in Dcalc.Ast.make_var (a_var, pos_call)) all_subscope_vars in let subscope_struct_arg = Bindlib.box_apply (fun subscope_args -> (Dcalc.Ast.ETuple (subscope_args, Some called_scope_input_struct), pos_call)) (Bindlib.box_list subscope_args) in let all_subscope_vars_dcalc = List.map (fun (subvar, tau) -> let sub_dcalc_var = Dcalc.Ast.Var.make (Pos.map_under_mark (fun s -> Pos.unmark (Ast.SubScopeName.get_info subindex) ^ "." ^ s) (Ast.ScopeVar.get_info subvar)) in (subvar, tau, sub_dcalc_var)) all_subscope_vars in let new_ctx = { ctx with subscope_vars = Ast.SubScopeMap.add subindex (List.fold_left (fun acc (var, tau, dvar) -> Ast.ScopeVarMap.add var (dvar, tau) acc) Ast.ScopeVarMap.empty all_subscope_vars_dcalc) ctx.subscope_vars; } in let subscope_func = tag_with_log_entry (Dcalc.Ast.make_var (scope_dcalc_var, Pos.get_position (Ast.SubScopeName.get_info subindex))) Dcalc.Ast.BeginCall [ (sigma_name, pos_sigma); Ast.SubScopeName.get_info subindex; Ast.ScopeName.get_info subname; ] in let call_expr = tag_with_log_entry (Bindlib.box_apply2 (fun e u -> (Dcalc.Ast.EApp (e, [ u ]), Pos.no_pos)) subscope_func subscope_struct_arg) Dcalc.Ast.EndCall [ (sigma_name, pos_sigma); Ast.SubScopeName.get_info subindex; Ast.ScopeName.get_info subname; ] in let result_tuple_var = Dcalc.Ast.Var.make ("result", Pos.no_pos) in let next_e, new_ctx = translate_rules new_ctx rest (sigma_name, pos_sigma) sigma_return_struct_name in let results_bindings = let xs = Array.of_list (List.map (fun (_, _, v) -> v) all_subscope_vars_dcalc) in let taus = List.map (fun (_, tau, _) -> (tau, pos_sigma)) all_subscope_vars_dcalc in let e1s = List.mapi (fun i _ -> Bindlib.box_apply (fun r -> ( Dcalc.Ast.ETupleAccess ( r, i, Some called_scope_return_struct, List.map (fun (_, t, _) -> (t, pos_sigma)) all_subscope_vars_dcalc ), pos_sigma )) (Dcalc.Ast.make_var (result_tuple_var, pos_sigma))) all_subscope_vars_dcalc in Dcalc.Ast.make_multiple_let_in xs taus (Bindlib.box_list e1s) next_e in let result_tuple_typ = ( Dcalc.Ast.TTuple ( List.map (fun (_, tau, _) -> (tau, pos_sigma)) all_subscope_vars_dcalc, Some called_scope_return_struct ), pos_sigma ) in (Dcalc.Ast.make_let_in result_tuple_var result_tuple_typ call_expr results_bindings, new_ctx) | Assertion e -> let next_e, new_ctx = translate_rules ctx rest (sigma_name, pos_sigma) sigma_return_struct_name in let new_e = translate_expr ctx e in ( Dcalc.Ast.make_let_in (Dcalc.Ast.Var.make ("_", Pos.no_pos)) (Dcalc.Ast.TLit TUnit, Pos.no_pos) (Bindlib.box_apply (fun new_e -> Pos.same_pos_as (Dcalc.Ast.EAssert new_e) e) new_e) next_e, new_ctx ) and translate_rules (ctx : ctx) (rules : Ast.rule list) ((sigma_name, pos_sigma) : Utils.Uid.MarkedString.info) (sigma_return_struct_name : Ast.StructName.t) : Dcalc.Ast.expr Pos.marked Bindlib.box * ctx = match rules with | [] -> let scope_variables = Ast.ScopeVarMap.bindings ctx.scope_vars in let return_exp = Bindlib.box_apply (fun args -> (Dcalc.Ast.ETuple (args, Some sigma_return_struct_name), pos_sigma)) (Bindlib.box_list (List.map (fun (_, (dcalc_var, _)) -> Dcalc.Ast.make_var (dcalc_var, pos_sigma)) scope_variables)) in (return_exp, ctx) | hd :: tl -> translate_rule ctx hd tl (sigma_name, pos_sigma) sigma_return_struct_name let translate_scope_decl (struct_ctx : Ast.struct_ctx) (enum_ctx : Ast.enum_ctx) (sctx : scope_sigs_ctx) (scope_name : Ast.ScopeName.t) (sigma : Ast.scope_decl) : Dcalc.Ast.expr Pos.marked Bindlib.box * Dcalc.Ast.struct_ctx = let ctx = empty_ctx struct_ctx enum_ctx sctx scope_name in let sigma_info = Ast.ScopeName.get_info sigma.scope_decl_name in let scope_variables, _, scope_input_var, scope_input_struct_name, scope_return_struct_name = Ast.ScopeMap.find sigma.scope_decl_name sctx in let pos_sigma = Pos.get_position sigma_info in let rules, ctx = translate_rules ctx sigma.scope_decl_rules sigma_info scope_return_struct_name in let scope_variables = List.map (fun (x, tau) -> let dcalc_x, _ = Ast.ScopeVarMap.find x ctx.scope_vars in (x, tau, dcalc_x)) scope_variables in (* first we create variables from the fields of the input struct *) let rules = let xs = Array.of_list (List.map (fun (_, _, v) -> v) scope_variables) in let taus = List.map (fun (_, tau, _) -> (Dcalc.Ast.TArrow ((Dcalc.Ast.TLit TUnit, pos_sigma), (tau, pos_sigma)), pos_sigma)) scope_variables in let e1s = List.mapi (fun i _ -> Bindlib.box_apply (fun r -> ( Dcalc.Ast.ETupleAccess ( r, i, Some scope_input_struct_name, List.map (fun (_, t, _) -> ( Dcalc.Ast.TArrow ((Dcalc.Ast.TLit TUnit, pos_sigma), (t, pos_sigma)), pos_sigma )) scope_variables ), pos_sigma )) (Dcalc.Ast.make_var (scope_input_var, pos_sigma))) scope_variables in Dcalc.Ast.make_multiple_let_in xs taus (Bindlib.box_list e1s) rules in let scope_return_struct_fields = List.map (fun (_, tau, dvar) -> let struct_field_name = Ast.StructFieldName.fresh (Bindlib.name_of dvar ^ "_out", pos_sigma) in (struct_field_name, (tau, pos_sigma))) scope_variables in let scope_input_struct_fields = List.map (fun (_, tau, dvar) -> let struct_field_name = Ast.StructFieldName.fresh (Bindlib.name_of dvar ^ "_in", pos_sigma) in ( struct_field_name, (Dcalc.Ast.TArrow ((Dcalc.Ast.TLit TUnit, pos_sigma), (tau, pos_sigma)), pos_sigma) )) scope_variables in let new_struct_ctx = Ast.StructMap.add scope_input_struct_name scope_input_struct_fields (Ast.StructMap.singleton scope_return_struct_name scope_return_struct_fields) in ( Dcalc.Ast.make_abs [| scope_input_var |] rules pos_sigma [ ( Dcalc.Ast.TTuple (List.map snd scope_input_struct_fields, Some scope_input_struct_name), pos_sigma ); ] pos_sigma, new_struct_ctx ) let build_scope_typ_from_sig (scope_sig : (Ast.ScopeVar.t * Dcalc.Ast.typ) list) (scope_input_struct_name : Ast.StructName.t) (scope_return_struct_name : Ast.StructName.t) (pos : Pos.t) : Dcalc.Ast.typ Pos.marked = let result_typ = ( Dcalc.Ast.TTuple (List.map (fun (_, tau) -> (tau, pos)) scope_sig, Some scope_return_struct_name), pos ) in let input_typ = ( Dcalc.Ast.TTuple ( List.map (fun (_, tau) -> (Dcalc.Ast.TArrow ((TLit TUnit, pos), (tau, pos)), pos)) scope_sig, Some scope_input_struct_name ), pos ) in (Dcalc.Ast.TArrow (input_typ, result_typ), pos) let translate_program (prgm : Ast.program) (top_level_scope_name : Ast.ScopeName.t) : Dcalc.Ast.program * Dcalc.Ast.expr Pos.marked * Dependency.TVertex.t list = let scope_dependencies = Dependency.build_program_dep_graph prgm in Dependency.check_for_cycle_in_scope scope_dependencies; let types_ordering = Dependency.check_type_cycles prgm.program_structs prgm.program_enums in let scope_ordering = Dependency.get_scope_ordering scope_dependencies in let struct_ctx = prgm.program_structs in let enum_ctx = prgm.program_enums in let ctx_for_typ_translation scope_name = empty_ctx struct_ctx enum_ctx Ast.ScopeMap.empty scope_name in let dummy_scope = Ast.ScopeName.fresh ("dummy", Pos.no_pos) in let decl_ctx = { Dcalc.Ast.ctx_structs = Ast.StructMap.map (List.map (fun (x, y) -> (x, translate_typ (ctx_for_typ_translation dummy_scope) y))) struct_ctx; Dcalc.Ast.ctx_enums = Ast.EnumMap.map (List.map (fun (x, y) -> (x, (translate_typ (ctx_for_typ_translation dummy_scope)) y))) enum_ctx; } in let sctx : scope_sigs_ctx = Ast.ScopeMap.mapi (fun scope_name scope -> let scope_dvar = Dcalc.Ast.Var.make (Ast.ScopeName.get_info scope.Ast.scope_decl_name) in let scope_return_struct_name = Ast.StructName.fresh (Pos.map_under_mark (fun s -> s ^ "_out") (Ast.ScopeName.get_info scope_name)) in let scope_input_var = Dcalc.Ast.Var.make (Pos.map_under_mark (fun s -> s ^ "_in") (Ast.ScopeName.get_info scope_name)) in let scope_input_struct_name = Ast.StructName.fresh (Pos.map_under_mark (fun s -> s ^ "_in") (Ast.ScopeName.get_info scope_name)) in ( List.map (fun (scope_var, tau) -> let tau = translate_typ (ctx_for_typ_translation scope_name) tau in (scope_var, Pos.unmark tau)) (Ast.ScopeVarMap.bindings scope.scope_sig), scope_dvar, scope_input_var, scope_input_struct_name, scope_return_struct_name )) prgm.program_scopes in (* the final expression on which we build on is the variable of the top-level scope that we are returning *) let acc = Dcalc.Ast.make_var (let _, x, _, _, _ = Ast.ScopeMap.find top_level_scope_name sctx in (x, Pos.no_pos)) in (* the resulting expression is the list of definitions of all the scopes, ending with the top-level scope. *) let whole_program_expr, scopes, decl_ctx = List.fold_right (fun scope_name (acc, scopes, decl_ctx) -> let scope = Ast.ScopeMap.find scope_name prgm.program_scopes in let pos_scope = Pos.get_position (Ast.ScopeName.get_info scope.scope_decl_name) in let scope_expr, scope_out_struct = translate_scope_decl struct_ctx enum_ctx sctx scope_name scope in let scope_sig, dvar, _, scope_input_struct_name, scope_return_struct_name = Ast.ScopeMap.find scope_name sctx in let scope_typ = build_scope_typ_from_sig scope_sig scope_input_struct_name scope_return_struct_name pos_scope in let decl_ctx = { decl_ctx with Dcalc.Ast.ctx_structs = Ast.StructMap.union (fun _ _ -> assert false (* should not happen *)) decl_ctx.Dcalc.Ast.ctx_structs scope_out_struct; } in ( Dcalc.Ast.make_let_in dvar scope_typ scope_expr acc, (scope_name, dvar, Bindlib.unbox scope_expr) :: scopes, decl_ctx )) scope_ordering (acc, [], decl_ctx) in ({ scopes; decl_ctx }, Bindlib.unbox whole_program_expr, types_ordering)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>