package catala
Low-level language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.2.0.tar.gz
md5=4c6f725ef4d21c5ff91f60d74b454ef7
sha512=98806e03daa6f33740b80a0f78a37320fb70ebea8cb927ea8fed022673459189c32e2389ccba0fa25d93f754b0fa0128a5ee28e1bb9abefa330deb4be8cc7d95
doc/src/catala.scopelang/scope_to_dcalc.ml.html
Source file scope_to_dcalc.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pos = Utils.Pos module Errors = Utils.Errors module Cli = Utils.Cli type scope_sigs_ctx = ((Ast.ScopeVar.t * Dcalc.Ast.typ) list * Dcalc.Ast.Var.t) Ast.ScopeMap.t type ctx = { structs : Ast.struct_ctx; enums : Ast.enum_ctx; scope_name : Ast.ScopeName.t; scopes_parameters : scope_sigs_ctx; scope_vars : (Dcalc.Ast.Var.t * Dcalc.Ast.typ) Ast.ScopeVarMap.t; subscope_vars : (Dcalc.Ast.Var.t * Dcalc.Ast.typ) Ast.ScopeVarMap.t Ast.SubScopeMap.t; local_vars : Dcalc.Ast.Var.t Ast.VarMap.t; } let empty_ctx (struct_ctx : Ast.struct_ctx) (enum_ctx : Ast.enum_ctx) (scopes_ctx : scope_sigs_ctx) (scope_name : Ast.ScopeName.t) = { structs = struct_ctx; enums = enum_ctx; scope_name; scopes_parameters = scopes_ctx; scope_vars = Ast.ScopeVarMap.empty; subscope_vars = Ast.SubScopeMap.empty; local_vars = Ast.VarMap.empty; } type scope_ctx = Dcalc.Ast.Var.t Ast.ScopeMap.t let hole_var : Dcalc.Ast.Var.t = Dcalc.Ast.Var.make ("·", Pos.no_pos) let rec translate_typ (ctx : ctx) (t : Ast.typ Pos.marked) : Dcalc.Ast.typ Pos.marked = Pos.same_pos_as ( match Pos.unmark t with | Ast.TLit l -> Dcalc.Ast.TLit l | Ast.TArrow (t1, t2) -> Dcalc.Ast.TArrow (translate_typ ctx t1, translate_typ ctx t2) | Ast.TStruct s_uid -> let s_fields = Ast.StructMap.find s_uid ctx.structs in Dcalc.Ast.TTuple (List.map (fun (_, t) -> translate_typ ctx t) s_fields) | Ast.TEnum e_uid -> let e_cases = Ast.EnumMap.find e_uid ctx.enums in Dcalc.Ast.TEnum (List.map (fun (_, t) -> translate_typ ctx t) e_cases) ) t let merge_defaults (caller : Dcalc.Ast.expr Pos.marked Bindlib.box) (callee : Dcalc.Ast.expr Pos.marked Bindlib.box) : Dcalc.Ast.expr Pos.marked Bindlib.box = let caller = Dcalc.Ast.make_app caller [ Bindlib.box (Dcalc.Ast.ELit Dcalc.Ast.LUnit, Pos.no_pos) ] Pos.no_pos in let body = Bindlib.box_apply2 (fun caller callee -> ( Dcalc.Ast.EDefault ([ caller ], (Dcalc.Ast.ELit (Dcalc.Ast.LBool true), Pos.no_pos), callee), Pos.no_pos )) caller callee in body let rec translate_expr (ctx : ctx) (e : Ast.expr Pos.marked) : Dcalc.Ast.expr Pos.marked Bindlib.box = Bindlib.box_apply (fun (x : Dcalc.Ast.expr) -> Pos.same_pos_as x e) ( match Pos.unmark e with | EVar v -> Bindlib.box_var (Ast.VarMap.find (Pos.unmark v) ctx.local_vars) | ELit l -> Bindlib.box (Dcalc.Ast.ELit l) | EStruct (struct_name, e_fields) -> let struct_sig = Ast.StructMap.find struct_name ctx.structs in let d_fields, remaining_e_fields = List.fold_right (fun (field_name, _) (d_fields, e_fields) -> let field_e = try Ast.StructFieldMap.find field_name e_fields with Not_found -> Errors.raise_spanned_error (Format.asprintf "The field %a does not belong to the structure %a" Ast.StructFieldName.format_t field_name Ast.StructName.format_t struct_name) (Pos.get_position e) in let field_d = translate_expr ctx field_e in let field_d = Bindlib.box_apply (fun field_d -> (field_d, Some (Ast.StructFieldName.get_info field_name))) field_d in (field_d :: d_fields, Ast.StructFieldMap.remove field_name e_fields)) struct_sig ([], e_fields) in if Ast.StructFieldMap.cardinal remaining_e_fields > 0 then Errors.raise_spanned_error (Format.asprintf "Missing fields for structure %a: %a" Ast.StructName.format_t struct_name (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt ", ") (fun fmt (field_name, _) -> Format.fprintf fmt "%a" Ast.StructFieldName.format_t field_name)) (Ast.StructFieldMap.bindings remaining_e_fields)) (Pos.get_position e) else Bindlib.box_apply (fun d_fields -> Dcalc.Ast.ETuple d_fields) (Bindlib.box_list d_fields) | EStructAccess (e1, field_name, struct_name) -> let struct_sig = Ast.StructMap.find struct_name ctx.structs in let _, field_index = try List.assoc field_name (List.mapi (fun i (x, y) -> (x, (y, i))) struct_sig) with Not_found -> Errors.raise_spanned_error (Format.asprintf "The field %a does not belong to the structure %a" Ast.StructFieldName.format_t field_name Ast.StructName.format_t struct_name) (Pos.get_position e) in let e1 = translate_expr ctx e1 in Bindlib.box_apply (fun e1 -> Dcalc.Ast.ETupleAccess (e1, field_index, Some (Ast.StructFieldName.get_info field_name))) e1 | EEnumInj (e1, constructor, enum_name) -> let enum_sig = Ast.EnumMap.find enum_name ctx.enums in let _, constructor_index = try List.assoc constructor (List.mapi (fun i (x, y) -> (x, (y, i))) enum_sig) with Not_found -> Errors.raise_spanned_error (Format.asprintf "The constructor %a does not belong to the enum %a" Ast.EnumConstructor.format_t constructor Ast.EnumName.format_t enum_name) (Pos.get_position e) in let e1 = translate_expr ctx e1 in Bindlib.box_apply (fun e1 -> Dcalc.Ast.EInj ( e1, constructor_index, Ast.EnumConstructor.get_info constructor, List.map (fun (_, t) -> translate_typ ctx t) enum_sig )) e1 | EMatch (e1, enum_name, cases) -> let enum_sig = Ast.EnumMap.find enum_name ctx.enums in let d_cases, remaining_e_cases = List.fold_right (fun (constructor, _) (d_cases, e_cases) -> let case_e = try Ast.EnumConstructorMap.find constructor e_cases with Not_found -> Errors.raise_spanned_error (Format.asprintf "The constructor %a of enum %a is missing from this pattern matching" Ast.EnumConstructor.format_t constructor Ast.EnumName.format_t enum_name) (Pos.get_position e) in let case_d = translate_expr ctx case_e in let case_d = Bindlib.box_apply (fun case_d -> (case_d, Ast.EnumConstructor.get_info constructor)) case_d in (case_d :: d_cases, Ast.EnumConstructorMap.remove constructor e_cases)) enum_sig ([], cases) in if Ast.EnumConstructorMap.cardinal remaining_e_cases > 0 then Errors.raise_spanned_error (Format.asprintf "Patter matching is incomplete for enum %a: missing cases %a" Ast.EnumName.format_t enum_name (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt ", ") (fun fmt (case_name, _) -> Format.fprintf fmt "%a" Ast.EnumConstructor.format_t case_name)) (Ast.EnumConstructorMap.bindings remaining_e_cases)) (Pos.get_position e) else let e1 = translate_expr ctx e1 in Bindlib.box_apply2 (fun d_fields e1 -> Dcalc.Ast.EMatch (e1, d_fields)) (Bindlib.box_list d_cases) e1 | EApp (e1, args) -> Bindlib.box_apply2 (fun e u -> Dcalc.Ast.EApp (e, u)) (translate_expr ctx e1) (Bindlib.box_list (List.map (translate_expr ctx) args)) | EAbs (pos_binder, binder, typ) -> let xs, body = Bindlib.unmbind binder in let new_xs = Array.map (fun x -> Dcalc.Ast.Var.make (Bindlib.name_of x, Pos.no_pos)) xs in let both_xs = Array.map2 (fun x new_x -> (x, new_x)) xs new_xs in let body = translate_expr { ctx with local_vars = Array.fold_left (fun local_vars (x, new_x) -> Ast.VarMap.add x new_x local_vars) ctx.local_vars both_xs; } body in let binder = Bindlib.bind_mvar new_xs body in Bindlib.box_apply (fun b -> Dcalc.Ast.EAbs (pos_binder, b, List.map (translate_typ ctx) typ)) binder | EDefault (excepts, just, cons) -> Bindlib.box_apply3 (fun e j c -> Dcalc.Ast.EDefault (e, j, c)) (Bindlib.box_list (List.map (translate_expr ctx) excepts)) (translate_expr ctx just) (translate_expr ctx cons) | ELocation (ScopeVar a) -> Bindlib.box_var (fst (Ast.ScopeVarMap.find (Pos.unmark a) ctx.scope_vars)) | ELocation (SubScopeVar (_, s, a)) -> ( try Bindlib.box_var (fst (Ast.ScopeVarMap.find (Pos.unmark a) (Ast.SubScopeMap.find (Pos.unmark s) ctx.subscope_vars))) with Not_found -> Errors.raise_spanned_error (Format.asprintf "The variable %a.%a cannot be used here,\n\ as subscope %a's results will not have been computed yet" Ast.SubScopeName.format_t (Pos.unmark s) Ast.ScopeVar.format_t (Pos.unmark a) Ast.SubScopeName.format_t (Pos.unmark s)) (Pos.get_position e) ) | EIfThenElse (cond, et, ef) -> Bindlib.box_apply3 (fun c t f -> Dcalc.Ast.EIfThenElse (c, t, f)) (translate_expr ctx cond) (translate_expr ctx et) (translate_expr ctx ef) | EOp op -> Bindlib.box (Dcalc.Ast.EOp op) ) let rec translate_rule (ctx : ctx) (rule : Ast.rule) (rest : Ast.rule list) ((sigma_name, pos_sigma) : Utils.Uid.MarkedString.info) : Dcalc.Ast.expr Pos.marked Bindlib.box * ctx = match rule with | Definition ((ScopeVar a, var_def_pos), tau, e) -> let a_name = Ast.ScopeVar.get_info (Pos.unmark a) in let a_var = Dcalc.Ast.Var.make a_name in let tau = translate_typ ctx tau in let new_ctx = { ctx with scope_vars = Ast.ScopeVarMap.add (Pos.unmark a) (a_var, Pos.unmark tau) ctx.scope_vars; } in let next_e, new_ctx = translate_rules new_ctx rest (sigma_name, pos_sigma) in let new_e = translate_expr ctx e in let a_expr = Dcalc.Ast.make_var (a_var, var_def_pos) in let merged_expr = merge_defaults a_expr new_e in let merged_expr = Bindlib.box_apply (fun merged_expr -> ( Dcalc.Ast.EApp ( (Dcalc.Ast.EOp (Dcalc.Ast.Unop Dcalc.Ast.ErrorOnEmpty), Pos.get_position a_name), [ merged_expr ] ), Pos.get_position merged_expr )) merged_expr in let merged_expr = Bindlib.box_apply (fun merged_expr -> ( Dcalc.Ast.EApp ( ( Dcalc.Ast.EOp (Dcalc.Ast.Unop (Dcalc.Ast.Log (Dcalc.Ast.VarDef, [ (sigma_name, pos_sigma); a_name ]))), Pos.get_position a_name ), [ merged_expr ] ), Pos.get_position merged_expr )) merged_expr in let next_e = Dcalc.Ast.make_let_in a_var tau merged_expr next_e in (next_e, new_ctx) | Definition ((SubScopeVar (_subs_name, subs_index, subs_var), var_def_pos), tau, e) -> let a_name = Pos.map_under_mark (fun str -> str ^ "." ^ Pos.unmark (Ast.ScopeVar.get_info (Pos.unmark subs_var))) (Ast.SubScopeName.get_info (Pos.unmark subs_index)) in let a_var = (Dcalc.Ast.Var.make a_name, var_def_pos) in let tau = translate_typ ctx tau in let new_ctx = { ctx with subscope_vars = Ast.SubScopeMap.update (Pos.unmark subs_index) (fun map -> match map with | Some map -> Some (Ast.ScopeVarMap.add (Pos.unmark subs_var) (Pos.unmark a_var, Pos.unmark tau) map) | None -> Some (Ast.ScopeVarMap.singleton (Pos.unmark subs_var) (Pos.unmark a_var, Pos.unmark tau))) ctx.subscope_vars; } in let next_e, new_ctx = translate_rules new_ctx rest (sigma_name, pos_sigma) in let intermediate_e = Dcalc.Ast.make_abs (Array.of_list [ Pos.unmark a_var ]) next_e var_def_pos [ (Dcalc.Ast.TArrow ((TLit TUnit, var_def_pos), tau), var_def_pos) ] (Pos.get_position e) in let new_e = translate_expr ctx e in let new_e = Bindlib.box_apply (fun new_e -> ( Dcalc.Ast.EApp ( ( Dcalc.Ast.EOp (Dcalc.Ast.Unop (Dcalc.Ast.Log (Dcalc.Ast.VarDef, [ (sigma_name, pos_sigma); a_name ]))), Pos.get_position a_name ), [ new_e ] ), Pos.get_position new_e )) new_e in let silent_var = Dcalc.Ast.Var.make ("_", Pos.no_pos) in let thunked_new_e = Dcalc.Ast.make_abs (Array.of_list [ silent_var ]) new_e var_def_pos [ (Dcalc.Ast.TLit TUnit, var_def_pos) ] var_def_pos in let out_e = Dcalc.Ast.make_app intermediate_e [ thunked_new_e ] (Pos.get_position e) in (out_e, new_ctx) | Call (subname, subindex) -> let all_subscope_vars, scope_dcalc_var = Ast.ScopeMap.find subname ctx.scopes_parameters in let subscope_vars_defined = try Ast.SubScopeMap.find subindex ctx.subscope_vars with Not_found -> Ast.ScopeVarMap.empty in let subscope_var_not_yet_defined subvar = not (Ast.ScopeVarMap.mem subvar subscope_vars_defined) in let subscope_args = List.map (fun (subvar, _) -> if subscope_var_not_yet_defined subvar then Bindlib.box Dcalc.Interpreter.empty_thunked_term else let a_var, _ = Ast.ScopeVarMap.find subvar subscope_vars_defined in Dcalc.Ast.make_var (a_var, Pos.get_position (Ast.SubScopeName.get_info subindex))) all_subscope_vars in let all_subscope_vars_dcalc = List.map (fun (subvar, tau) -> let sub_dcalc_var = Dcalc.Ast.Var.make (Pos.map_under_mark (fun s -> Pos.unmark (Ast.SubScopeName.get_info subindex) ^ "." ^ s) (Ast.ScopeVar.get_info subvar)) in (subvar, tau, sub_dcalc_var)) all_subscope_vars in let new_ctx = { ctx with subscope_vars = Ast.SubScopeMap.add subindex (List.fold_left (fun acc (var, tau, dvar) -> Ast.ScopeVarMap.add var (dvar, tau) acc) Ast.ScopeVarMap.empty all_subscope_vars_dcalc) ctx.subscope_vars; } in let subscope_func = Dcalc.Ast.make_var (scope_dcalc_var, Pos.get_position (Ast.SubScopeName.get_info subindex)) in let subscope_func = Bindlib.box_apply (fun subscope_func -> ( Dcalc.Ast.EApp ( ( Dcalc.Ast.EOp (Dcalc.Ast.Unop (Dcalc.Ast.Log ( Dcalc.Ast.BeginCall, [ (sigma_name, pos_sigma); Ast.SubScopeName.get_info subindex; Ast.ScopeName.get_info subname; ] ))), Pos.get_position subscope_func ), [ subscope_func ] ), Pos.get_position subscope_func )) subscope_func in let call_expr = Bindlib.box_apply2 (fun e u -> (Dcalc.Ast.EApp (e, u), Pos.no_pos)) subscope_func (Bindlib.box_list subscope_args) in let result_tuple_var = Dcalc.Ast.Var.make ("result", Pos.no_pos) in let next_e, new_ctx = translate_rules new_ctx rest (sigma_name, pos_sigma) in let results_bindings, _ = List.fold_right (fun (_, tau, dvar) (acc, i) -> let result_access = Bindlib.box_apply (fun r -> (Dcalc.Ast.ETupleAccess (r, i, None), pos_sigma)) (Dcalc.Ast.make_var (result_tuple_var, pos_sigma)) in (Dcalc.Ast.make_let_in dvar (tau, pos_sigma) result_access acc, i - 1)) all_subscope_vars_dcalc (next_e, List.length all_subscope_vars_dcalc - 1) in let results_bindings = Bindlib.box_apply (fun results_bindings -> ( Dcalc.Ast.EApp ( ( Dcalc.Ast.EOp (Dcalc.Ast.Unop (Dcalc.Ast.Log ( Dcalc.Ast.EndCall, [ (sigma_name, pos_sigma); Ast.SubScopeName.get_info subindex; Ast.ScopeName.get_info subname; ] ))), Pos.get_position results_bindings ), [ results_bindings ] ), Pos.get_position results_bindings )) results_bindings in let result_tuple_typ = ( Dcalc.Ast.TTuple (List.map (fun (_, tau, _) -> (tau, pos_sigma)) all_subscope_vars_dcalc), pos_sigma ) in (Dcalc.Ast.make_let_in result_tuple_var result_tuple_typ call_expr results_bindings, new_ctx) | Assertion e -> let next_e, new_ctx = translate_rules ctx rest (sigma_name, pos_sigma) in let new_e = translate_expr ctx e in ( Dcalc.Ast.make_let_in (Dcalc.Ast.Var.make ("_", Pos.no_pos)) (Dcalc.Ast.TLit TUnit, Pos.no_pos) (Bindlib.box_apply (fun new_e -> Pos.same_pos_as (Dcalc.Ast.EAssert new_e) e) new_e) next_e, new_ctx ) and translate_rules (ctx : ctx) (rules : Ast.rule list) ((sigma_name, pos_sigma) : Utils.Uid.MarkedString.info) : Dcalc.Ast.expr Pos.marked Bindlib.box * ctx = match rules with | [] -> let scope_variables = Ast.ScopeVarMap.bindings ctx.scope_vars in let return_exp = Bindlib.box_apply (fun args -> (Dcalc.Ast.ETuple (List.map (fun arg -> (arg, None)) args), pos_sigma)) (Bindlib.box_list (List.map (fun (_, (dcalc_var, _)) -> Dcalc.Ast.make_var (dcalc_var, pos_sigma)) scope_variables)) in (return_exp, ctx) | hd :: tl -> translate_rule ctx hd tl (sigma_name, pos_sigma) let translate_scope_decl (struct_ctx : Ast.struct_ctx) (enum_ctx : Ast.enum_ctx) (sctx : scope_sigs_ctx) (scope_name : Ast.ScopeName.t) (sigma : Ast.scope_decl) : Dcalc.Ast.expr Pos.marked Bindlib.box = let ctx = empty_ctx struct_ctx enum_ctx sctx scope_name in let sigma_info = Ast.ScopeName.get_info sigma.scope_decl_name in let rules, ctx = translate_rules ctx sigma.scope_decl_rules sigma_info in let scope_variables, _ = Ast.ScopeMap.find sigma.scope_decl_name sctx in let scope_variables = List.map (fun (x, tau) -> let dcalc_x, _ = Ast.ScopeVarMap.find x ctx.scope_vars in (x, tau, dcalc_x)) scope_variables in let pos_sigma = Pos.get_position sigma_info in Dcalc.Ast.make_abs (Array.of_list (List.map (fun (_, _, x) -> x) scope_variables)) rules pos_sigma (List.map (fun (_, tau, _) -> (Dcalc.Ast.TArrow ((Dcalc.Ast.TLit TUnit, pos_sigma), (tau, pos_sigma)), pos_sigma)) scope_variables) pos_sigma let build_scope_typ_from_sig (scope_sig : (Ast.ScopeVar.t * Dcalc.Ast.typ) list) (pos : Pos.t) : Dcalc.Ast.typ Pos.marked = let result_typ = (Dcalc.Ast.TTuple (List.map (fun (_, tau) -> (tau, pos)) scope_sig), pos) in List.fold_right (fun (_, arg_t) acc -> (Dcalc.Ast.TArrow ((Dcalc.Ast.TArrow ((TLit TUnit, pos), (arg_t, pos)), pos), acc), pos)) scope_sig result_typ let translate_program (prgm : Ast.program) (top_level_scope_name : Ast.ScopeName.t) : Dcalc.Ast.expr Pos.marked = let scope_dependencies = Dependency.build_program_dep_graph prgm in Dependency.check_for_cycle_in_scope scope_dependencies; Dependency.check_type_cycles prgm.program_structs prgm.program_enums; let scope_ordering = Dependency.get_scope_ordering scope_dependencies in let struct_ctx = prgm.program_structs in let enum_ctx = prgm.program_enums in let sctx : scope_sigs_ctx = Ast.ScopeMap.mapi (fun scope_name scope -> let scope_dvar = Dcalc.Ast.Var.make (Ast.ScopeName.get_info scope.Ast.scope_decl_name) in ( List.map (fun (scope_var, tau) -> let tau = translate_typ (empty_ctx struct_ctx enum_ctx Ast.ScopeMap.empty scope_name) tau in (scope_var, Pos.unmark tau)) (Ast.ScopeVarMap.bindings scope.scope_sig), scope_dvar )) prgm.program_scopes in (* the final expression on which we build on is the variable of the top-level scope that we are returning *) let acc = Dcalc.Ast.make_var (snd (Ast.ScopeMap.find top_level_scope_name sctx), Pos.no_pos) in (* the resulting expression is the list of definitions of all the scopes, ending with the top-level scope. *) Bindlib.unbox (let acc = List.fold_right (fun scope_name (acc : Dcalc.Ast.expr Pos.marked Bindlib.box) -> let scope = Ast.ScopeMap.find scope_name prgm.program_scopes in let pos_scope = Pos.get_position (Ast.ScopeName.get_info scope.scope_decl_name) in let scope_expr = translate_scope_decl struct_ctx enum_ctx sctx scope_name scope in let scope_sig, dvar = Ast.ScopeMap.find scope_name sctx in let scope_typ = build_scope_typ_from_sig scope_sig pos_scope in Dcalc.Ast.make_let_in dvar scope_typ scope_expr acc) scope_ordering acc in acc)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>