package catala
Low-level language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.2.0.tar.gz
md5=4c6f725ef4d21c5ff91f60d74b454ef7
sha512=98806e03daa6f33740b80a0f78a37320fb70ebea8cb927ea8fed022673459189c32e2389ccba0fa25d93f754b0fa0128a5ee28e1bb9abefa330deb4be8cc7d95
doc/src/catala.dcalc/typing.ml.html
Source file typing.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** Typing for the default calculus. Because of the error terms, we perform type inference using the classical W algorithm with union-find unification. *) module Pos = Utils.Pos module Errors = Utils.Errors module A = Ast module Cli = Utils.Cli (** {1 Types and unification} *) (** We do not reuse {!type: Dcalc.Ast.typ} because we have to include a new [TAny] variant. Indeed, error terms can have any type and this has to be captured by the type sytem. *) type typ = | TLit of A.typ_lit | TArrow of typ Pos.marked UnionFind.elem * typ Pos.marked UnionFind.elem | TTuple of typ Pos.marked UnionFind.elem list | TEnum of typ Pos.marked UnionFind.elem list | TAny let rec format_typ (fmt : Format.formatter) (ty : typ Pos.marked UnionFind.elem) : unit = let ty_repr = UnionFind.get (UnionFind.find ty) in match Pos.unmark ty_repr with | TLit l -> Format.fprintf fmt "%a" Print.format_tlit l | TAny -> Format.fprintf fmt "any type" | TTuple ts -> Format.fprintf fmt "(%a)" (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt " * ") format_typ) ts | TEnum ts -> Format.fprintf fmt "(%a)" (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt " + ") format_typ) ts | TArrow (t1, t2) -> Format.fprintf fmt "%a → %a" format_typ t1 format_typ t2 (** Raises an error if unification cannot be performed *) let rec unify (t1 : typ Pos.marked UnionFind.elem) (t2 : typ Pos.marked UnionFind.elem) : unit = (* Cli.debug_print (Format.asprintf "Unifying %a and %a" format_typ t1 format_typ t2); *) let t1_repr = UnionFind.get (UnionFind.find t1) in let t2_repr = UnionFind.get (UnionFind.find t2) in match (t1_repr, t2_repr) with | (TLit tl1, _), (TLit tl2, _) when tl1 = tl2 -> () | (TArrow (t11, t12), t1_pos), (TArrow (t21, t22), t2_pos) -> ( try unify t11 t21; unify t12 t22 with Errors.StructuredError (msg, err_pos) -> Errors.raise_multispanned_error msg ( err_pos @ [ (Some (Format.asprintf "Type %a coming from expression:" format_typ t1), t1_pos); (Some (Format.asprintf "Type %a coming from expression:" format_typ t2), t2_pos); ] ) ) | (TTuple ts1, _), (TTuple ts2, _) -> List.iter2 unify ts1 ts2 | (TEnum ts1, _), (TEnum ts2, _) -> List.iter2 unify ts1 ts2 | (TAny, _), (TAny, _) -> ignore (UnionFind.union t1 t2) | (TAny, _), t_repr | t_repr, (TAny, _) -> let t_union = UnionFind.union t1 t2 in ignore (UnionFind.set t_union t_repr) | (_, t1_pos), (_, t2_pos) -> (* TODO: if we get weird error messages, then it means that we should use the persistent version of the union-find data structure. *) Errors.raise_multispanned_error (Format.asprintf "Error during typechecking, types %a and %a are incompatible" format_typ t1 format_typ t2) [ (Some (Format.asprintf "Type %a coming from expression:" format_typ t1), t1_pos); (Some (Format.asprintf "Type %a coming from expression:" format_typ t2), t2_pos); ] (** Operators have a single type, instead of being polymorphic with constraints. This allows us to have a simpler type system, while we argue the syntactic burden of operator annotations helps the programmer visualize the type flow in the code. *) let op_type (op : A.operator Pos.marked) : typ Pos.marked UnionFind.elem = let pos = Pos.get_position op in let bt = UnionFind.make (TLit TBool, pos) in let it = UnionFind.make (TLit TInt, pos) in let rt = UnionFind.make (TLit TRat, pos) in let mt = UnionFind.make (TLit TMoney, pos) in let dut = UnionFind.make (TLit TDuration, pos) in let dat = UnionFind.make (TLit TDate, pos) in let any = UnionFind.make (TAny, pos) in let arr x y = UnionFind.make (TArrow (x, y), pos) in match Pos.unmark op with | A.Binop (A.And | A.Or) -> arr bt (arr bt bt) | A.Binop (A.Add KInt | A.Sub KInt | A.Mult KInt | A.Div KInt) -> arr it (arr it it) | A.Binop (A.Add KRat | A.Sub KRat | A.Mult KRat | A.Div KRat) -> arr rt (arr rt rt) | A.Binop (A.Add KMoney | A.Sub KMoney) -> arr mt (arr mt mt) | A.Binop (A.Add KDuration | A.Sub KDuration) -> arr dut (arr dut dut) | A.Binop (A.Sub KDate) -> arr dat (arr dat dut) | A.Binop (A.Add KDate) -> arr dat (arr dut dat) | A.Binop (A.Div KMoney) -> arr mt (arr mt rt) | A.Binop (A.Mult KMoney) -> arr mt (arr rt mt) | A.Binop (A.Lt KInt | A.Lte KInt | A.Gt KInt | A.Gte KInt) -> arr it (arr it bt) | A.Binop (A.Lt KRat | A.Lte KRat | A.Gt KRat | A.Gte KRat) -> arr rt (arr rt bt) | A.Binop (A.Lt KMoney | A.Lte KMoney | A.Gt KMoney | A.Gte KMoney) -> arr mt (arr mt bt) | A.Binop (A.Lt KDate | A.Lte KDate | A.Gt KDate | A.Gte KDate) -> arr dat (arr dat bt) | A.Binop (A.Lt KDuration | A.Lte KDuration | A.Gt KDuration | A.Gte KDuration) -> arr dut (arr dut bt) | A.Binop (A.Eq | A.Neq) -> arr any (arr any bt) | A.Unop (A.Minus KInt) -> arr it it | A.Unop (A.Minus KRat) -> arr rt rt | A.Unop (A.Minus KMoney) -> arr mt mt | A.Unop (A.Minus KDuration) -> arr dut dut | A.Unop A.Not -> arr bt bt | A.Unop A.ErrorOnEmpty -> arr any any | A.Unop (A.Log _) -> arr any any | Binop (Mult (KDate | KDuration)) | Binop (Div (KDate | KDuration)) | Unop (Minus KDate) -> Errors.raise_spanned_error "This operator is not available!" pos let rec ast_to_typ (ty : A.typ) : typ = match ty with | A.TLit l -> TLit l | A.TArrow (t1, t2) -> TArrow ( UnionFind.make (Pos.map_under_mark ast_to_typ t1), UnionFind.make (Pos.map_under_mark ast_to_typ t2) ) | A.TTuple ts -> TTuple (List.map (fun t -> UnionFind.make (Pos.map_under_mark ast_to_typ t)) ts) | A.TEnum ts -> TEnum (List.map (fun t -> UnionFind.make (Pos.map_under_mark ast_to_typ t)) ts) let rec typ_to_ast (ty : typ Pos.marked UnionFind.elem) : A.typ Pos.marked = Pos.map_under_mark (fun ty -> match ty with | TLit l -> A.TLit l | TTuple ts -> A.TTuple (List.map typ_to_ast ts) | TEnum ts -> A.TEnum (List.map typ_to_ast ts) | TArrow (t1, t2) -> A.TArrow (typ_to_ast t1, typ_to_ast t2) | TAny -> A.TLit A.TUnit) (UnionFind.get (UnionFind.find ty)) (** {1 Double-directed typing} *) type env = typ Pos.marked A.VarMap.t (** Infers the most permissive type from an expression *) let rec typecheck_expr_bottom_up (env : env) (e : A.expr Pos.marked) : typ Pos.marked UnionFind.elem = match Pos.unmark e with | EVar v -> ( match A.VarMap.find_opt (Pos.unmark v) env with | Some t -> UnionFind.make t | None -> Errors.raise_spanned_error "Variable not found in the current context" (Pos.get_position e) ) | ELit (LBool _) -> UnionFind.make (Pos.same_pos_as (TLit TBool) e) | ELit (LInt _) -> UnionFind.make (Pos.same_pos_as (TLit TInt) e) | ELit (LRat _) -> UnionFind.make (Pos.same_pos_as (TLit TRat) e) | ELit (LMoney _) -> UnionFind.make (Pos.same_pos_as (TLit TMoney) e) | ELit (LDate _) -> UnionFind.make (Pos.same_pos_as (TLit TDate) e) | ELit (LDuration _) -> UnionFind.make (Pos.same_pos_as (TLit TDuration) e) | ELit LUnit -> UnionFind.make (Pos.same_pos_as (TLit TUnit) e) | ELit LEmptyError -> UnionFind.make (Pos.same_pos_as TAny e) | ETuple es -> let ts = List.map (fun (e, _) -> typecheck_expr_bottom_up env e) es in UnionFind.make (Pos.same_pos_as (TTuple ts) e) | ETupleAccess (e1, n, _) -> ( let t1 = typecheck_expr_bottom_up env e1 in match Pos.unmark (UnionFind.get (UnionFind.find t1)) with | TTuple ts -> ( match List.nth_opt ts n with | Some t' -> t' | None -> Errors.raise_spanned_error (Format.asprintf "Expression should have a tuple type with at least %d elements but only has %d" n (List.length ts)) (Pos.get_position e1) ) | _ -> Errors.raise_spanned_error (Format.asprintf "Expected a tuple, got a %a" format_typ t1) (Pos.get_position e1) ) | EInj (e1, n, _, ts) -> let ts = List.map (fun t -> UnionFind.make (Pos.map_under_mark ast_to_typ t)) ts in let ts_n = match List.nth_opt ts n with | Some ts_n -> ts_n | None -> Errors.raise_spanned_error (Format.asprintf "Expression should have a sum type with at least %d cases but only has %d" n (List.length ts)) (Pos.get_position e) in typecheck_expr_top_down env e1 ts_n; UnionFind.make (Pos.same_pos_as (TEnum ts) e) | EMatch (e1, es) -> let enum_cases = List.map (fun (e', _) -> UnionFind.make (Pos.same_pos_as TAny e')) es in let t_e1 = UnionFind.make (Pos.same_pos_as (TEnum enum_cases) e1) in typecheck_expr_top_down env e1 t_e1; let t_ret = UnionFind.make (Pos.same_pos_as TAny e) in List.iteri (fun i (es', _) -> let enum_t = List.nth enum_cases i in let t_es' = UnionFind.make (Pos.same_pos_as (TArrow (enum_t, t_ret)) es') in typecheck_expr_top_down env es' t_es') es; t_ret | EAbs (pos_binder, binder, taus) -> let xs, body = Bindlib.unmbind binder in if Array.length xs = List.length taus then let xstaus = List.map2 (fun x tau -> (x, tau)) (Array.to_list xs) taus in let env = List.fold_left (fun env (x, tau) -> A.VarMap.add x (ast_to_typ (Pos.unmark tau), Pos.get_position tau) env) env xstaus in List.fold_right (fun t_arg (acc : typ Pos.marked UnionFind.elem) -> UnionFind.make (TArrow (UnionFind.make (Pos.map_under_mark ast_to_typ t_arg), acc), pos_binder)) taus (typecheck_expr_bottom_up env body) else Errors.raise_spanned_error (Format.asprintf "function has %d variables but was supplied %d types" (Array.length xs) (List.length taus)) pos_binder | EApp (e1, args) -> let t_args = List.map (typecheck_expr_bottom_up env) args in let t_ret = UnionFind.make (Pos.same_pos_as TAny e) in let t_app = List.fold_right (fun t_arg acc -> UnionFind.make (Pos.same_pos_as (TArrow (t_arg, acc)) e)) t_args t_ret in typecheck_expr_top_down env e1 t_app; t_ret | EOp op -> op_type (Pos.same_pos_as op e) | EDefault (excepts, just, cons) -> typecheck_expr_top_down env just (UnionFind.make (Pos.same_pos_as (TLit TBool) just)); let tcons = typecheck_expr_bottom_up env cons in List.iter (fun except -> typecheck_expr_top_down env except tcons) excepts; tcons | EIfThenElse (cond, et, ef) -> typecheck_expr_top_down env cond (UnionFind.make (Pos.same_pos_as (TLit TBool) cond)); let tt = typecheck_expr_bottom_up env et in typecheck_expr_top_down env ef tt; tt | EAssert e' -> typecheck_expr_top_down env e' (UnionFind.make (Pos.same_pos_as (TLit TBool) e')); UnionFind.make (Pos.same_pos_as (TLit TUnit) e') (** Checks whether the expression can be typed with the provided type *) and typecheck_expr_top_down (env : env) (e : A.expr Pos.marked) (tau : typ Pos.marked UnionFind.elem) : unit = match Pos.unmark e with | EVar v -> ( match A.VarMap.find_opt (Pos.unmark v) env with | Some tau' -> ignore (unify tau (UnionFind.make tau')) | None -> Errors.raise_spanned_error "Variable not found in the current context" (Pos.get_position e) ) | ELit (LBool _) -> unify tau (UnionFind.make (Pos.same_pos_as (TLit TBool) e)) | ELit (LInt _) -> unify tau (UnionFind.make (Pos.same_pos_as (TLit TInt) e)) | ELit (LRat _) -> unify tau (UnionFind.make (Pos.same_pos_as (TLit TRat) e)) | ELit (LMoney _) -> unify tau (UnionFind.make (Pos.same_pos_as (TLit TMoney) e)) | ELit (LDate _) -> unify tau (UnionFind.make (Pos.same_pos_as (TLit TDate) e)) | ELit (LDuration _) -> unify tau (UnionFind.make (Pos.same_pos_as (TLit TDuration) e)) | ELit LUnit -> unify tau (UnionFind.make (Pos.same_pos_as (TLit TUnit) e)) | ELit LEmptyError -> unify tau (UnionFind.make (Pos.same_pos_as TAny e)) | ETuple es -> ( let tau' = UnionFind.get (UnionFind.find tau) in match Pos.unmark tau' with | TTuple ts -> List.iter2 (fun (e, _) t -> typecheck_expr_top_down env e t) es ts | TAny -> unify tau (UnionFind.make (Pos.same_pos_as (TTuple (List.map (fun (arg, _) -> typecheck_expr_bottom_up env arg) es)) e)) | _ -> Errors.raise_spanned_error (Format.asprintf "expected %a, got a tuple" format_typ tau) (Pos.get_position e) ) | ETupleAccess (e1, n, _) -> ( let t1 = typecheck_expr_bottom_up env e1 in match Pos.unmark (UnionFind.get (UnionFind.find t1)) with | TTuple t1s -> ( match List.nth_opt t1s n with | Some t1n -> unify t1n tau | None -> Errors.raise_spanned_error (Format.asprintf "expression should have a tuple type with at least %d elements but only has %d" n (List.length t1s)) (Pos.get_position e1) ) | TAny -> (* Include total number of cases in ETupleAccess to continue typechecking at this point *) Errors.raise_spanned_error "The precise type of this expression cannot be inferred.\n\ Please raise an issue one https://github.com/CatalaLang/catala/issues" (Pos.get_position e1) | _ -> Errors.raise_spanned_error (Format.asprintf "expected a tuple , got %a" format_typ tau) (Pos.get_position e) ) | EInj (e1, n, _, ts) -> let ts = List.map (fun t -> UnionFind.make (Pos.map_under_mark ast_to_typ t)) ts in let ts_n = match List.nth_opt ts n with | Some ts_n -> ts_n | None -> Errors.raise_spanned_error (Format.asprintf "Expression should have a sum type with at least %d cases but only has %d" n (List.length ts)) (Pos.get_position e) in typecheck_expr_top_down env e1 ts_n; unify (UnionFind.make (Pos.same_pos_as (TEnum ts) e)) tau | EMatch (e1, es) -> let enum_cases = List.map (fun (e', _) -> UnionFind.make (Pos.same_pos_as TAny e')) es in let t_e1 = UnionFind.make (Pos.same_pos_as (TEnum enum_cases) e1) in typecheck_expr_top_down env e1 t_e1; let t_ret = UnionFind.make (Pos.same_pos_as TAny e) in List.iteri (fun i (es', _) -> let enum_t = List.nth enum_cases i in let t_es' = UnionFind.make (Pos.same_pos_as (TArrow (enum_t, t_ret)) es') in typecheck_expr_top_down env es' t_es') es; unify tau t_ret | EAbs (pos_binder, binder, t_args) -> let xs, body = Bindlib.unmbind binder in if Array.length xs = List.length t_args then let xstaus = List.map2 (fun x t_arg -> (x, t_arg)) (Array.to_list xs) t_args in let env = List.fold_left (fun env (x, t_arg) -> A.VarMap.add x (ast_to_typ (Pos.unmark t_arg), pos_binder) env) env xstaus in let t_out = typecheck_expr_bottom_up env body in let t_func = List.fold_right (fun t_arg acc -> UnionFind.make (Pos.same_pos_as (TArrow (UnionFind.make (ast_to_typ (Pos.unmark t_arg), pos_binder), acc)) e)) t_args t_out in unify t_func tau else Errors.raise_spanned_error (Format.asprintf "function has %d variables but was supplied %d types" (Array.length xs) (List.length t_args)) pos_binder | EApp (e1, args) -> let t_args = List.map (typecheck_expr_bottom_up env) args in let te1 = typecheck_expr_bottom_up env e1 in let t_func = List.fold_right (fun t_arg acc -> UnionFind.make (Pos.same_pos_as (TArrow (t_arg, acc)) e)) t_args tau in unify te1 t_func | EOp op -> let op_typ = op_type (Pos.same_pos_as op e) in unify op_typ tau | EDefault (excepts, just, cons) -> typecheck_expr_top_down env just (UnionFind.make (Pos.same_pos_as (TLit TBool) just)); typecheck_expr_top_down env cons tau; List.iter (fun except -> typecheck_expr_top_down env except tau) excepts | EIfThenElse (cond, et, ef) -> typecheck_expr_top_down env cond (UnionFind.make (Pos.same_pos_as (TLit TBool) cond)); typecheck_expr_top_down env et tau; typecheck_expr_top_down env ef tau | EAssert e' -> typecheck_expr_top_down env e' (UnionFind.make (Pos.same_pos_as (TLit TBool) e')); unify tau (UnionFind.make (Pos.same_pos_as (TLit TUnit) e')) (** {1 API} *) (* Infer the type of an expression *) let infer_type (e : A.expr Pos.marked) : A.typ Pos.marked = let ty = typecheck_expr_bottom_up A.VarMap.empty e in typ_to_ast ty (** Typechecks an expression given an expected type *) let check_type (e : A.expr Pos.marked) (tau : A.typ Pos.marked) = typecheck_expr_top_down A.VarMap.empty e (UnionFind.make (Pos.map_under_mark ast_to_typ tau))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>