package caisar
A platform for characterizing the safety and robustness of artificial intelligence based software
Install
Dune Dependency
Authors
Maintainers
Sources
caisar-4.0.tbz
sha256=58ba1e38721795b306c860b56aaeba971be586cd55fb96e3ec8af72dd005101b
sha512=f1b3b9899660745598cebe7ecb52a39e9e16dcb7352381ea75a80d2afa988437130c00bf66355991421d4cb3dc06b02c185f7d4bdcc1c86dfcde8084bd01a654
doc/src/caisar.xgboost/parser.ml.html
Source file parser.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
(**************************************************************************) (* *) (* This file is part of CAISAR. *) (* *) (* Copyright (C) 2025 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* You can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (** From https://github.com/dmlc/xgboost/raw/master/doc/model.schema *) (* {2 Utils } *) let assoc l (json : Yojson.Safe.t) : _ Ppx_deriving_yojson_runtime.error_or = match json with | `Assoc json' -> ( match List.assoc "name" json' with | exception Not_found -> Error "Gradient_booster name not found" | `String name -> ( match List.assoc name l with | exception Not_found -> Error ("Unknown gradient_booster " ^ name) | conv -> conv json json') | s -> Error ("Unknown gradient_booster " ^ Yojson.Safe.to_string s)) | _ -> Error "Gradient_booster name not found" type int_option = int option [@@deriving show] let int_option_none = Int32.of_string "2147483647" let int_option_of_yojson (json : Yojson.Safe.t) = match [%derive.of_yojson: int32] json with | Ok i -> if Int32.equal i int_option_none then Ok None else Ok (Some (Int32.to_int i)) | Error _ as error -> error let int_option_to_yojson i = let r = Option.value (Option.map Int32.of_int i) ~default:int_option_none in [%derive.to_yojson: int32] r (* {2 Definitions } *) type gbtree_model_param = { num_trees : string; num_parallel_tree : string; [@default ""] size_leaf_vector : string; } and tree_param = { num_nodes : string; size_leaf_vector : string; num_feature : string; } and reg_loss_param = { scale_pos_weight : string [@default ""] } and pseudo_huber_param = { huber_slope : string [@default ""] } and aft_loss_param = { aft_loss_distribution : string; [@default ""] aft_loss_distribution_scale : string; [@default ""] } and softmax_multiclass_param = { num_class : string } and lambda_rank_param = { num_pairsample : string; fix_list_weight : string; } and tree = { tree_param : tree_param; id : int; loss_changes : float array; sum_hessian : float array; base_weights : float array; left_children : int array; right_children : int array; parents : int_option array; split_indices : int array; split_conditions : float array; split_type : int array; default_left : bool array; categories : int array; categories_nodes : int array; categories_segments : int array; categories_sizes : int array; } and gbtree = { gbtree_model_param : gbtree_model_param; trees : tree array; tree_info : int array; } and gblinear = { weights : float array } and dart = { gbtree : gbtree; weight_drop : float array; } and learner_model_param = { base_score : string; [@default ""] num_class : string; [@default ""] num_feature : string; [@default ""] } [@@deriving show, yojson { strict = false }] type gradient_booster = | Gbtree of gbtree | Gblinear of gblinear | Dart of dart [@@deriving show] let gradient_booster_of_yojson : Yojson.Safe.t -> gradient_booster Ppx_deriving_yojson_runtime.error_or = assoc [ ( "gbtree", fun _ json -> Ppx_deriving_yojson_runtime.( >|= ) (gbtree_of_yojson (List.assoc "model" json)) (fun t -> Gbtree t) ); ( "gblinear", fun _ json -> Ppx_deriving_yojson_runtime.( >|= ) (gblinear_of_yojson (List.assoc "model" json)) (fun t -> Gblinear t) ); ( "dart", fun json _ -> Ppx_deriving_yojson_runtime.( >|= ) (dart_of_yojson json) (fun t -> Dart t) ); ] let gradient_booster_to_yojson = function | Gbtree t -> `Assoc [ ("name", `String "gbtree"); ("model", gbtree_to_yojson t) ] | Gblinear t -> `Assoc [ ("name", `String "gblinear"); ("model", gblinear_to_yojson t) ] | Dart t -> ( match dart_to_yojson t with | `Assoc l -> `Assoc (("name", `String "dart") :: l) | _ -> assert false) type objective = | Reg_squarederror of reg_loss_param | Reg_pseudohubererror of reg_loss_param | Reg_squaredlogerror of reg_loss_param | Reg_linear of reg_loss_param | Binary_logistic of reg_loss_param (* TODO: many are missing *) [@@deriving show] let objective_of_yojson : Yojson.Safe.t -> objective Ppx_deriving_yojson_runtime.error_or = let map f _ json = Ppx_deriving_yojson_runtime.( >|= ) (reg_loss_param_of_yojson (List.assoc "reg_loss_param" json)) f in assoc [ ("reg:squarederror", map @@ fun t -> Reg_squarederror t); ("reg:pseudohubererror", map @@ fun t -> Reg_pseudohubererror t); ("reg:squaredlogerror", map @@ fun t -> Reg_squaredlogerror t); ("reg:linear", map @@ fun t -> Reg_linear t); ("binary:logistic", map @@ fun t -> Binary_logistic t); ] let objective_to_yojson t = let mk name t = `Assoc [ ("name", `String name); ("reg_loss_param", reg_loss_param_to_yojson t) ] in match t with | Reg_squarederror t -> mk "reg:squarederror" t | Reg_pseudohubererror t -> mk "reg:pseudohuberror" t | Reg_squaredlogerror t -> mk "reg:squarelogerror" t | Reg_linear t -> mk "reg:linear" t | Binary_logistic t -> mk "binary:logistic" t type learner = { feature_names : string array; [@default [||]] feature_types : string array; [@default [||]] gradient_booster : gradient_booster; objective : objective; learner_model_param : learner_model_param; } and t = { version : int * int * int; learner : learner; } [@@deriving show, yojson { strict = false }]
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>