package caisar
A platform for characterizing the safety and robustness of artificial intelligence based software
Install
Dune Dependency
Authors
Maintainers
Sources
caisar-4.0.tbz
sha256=58ba1e38721795b306c860b56aaeba971be586cd55fb96e3ec8af72dd005101b
sha512=f1b3b9899660745598cebe7ecb52a39e9e16dcb7352381ea75a80d2afa988437130c00bf66355991421d4cb3dc06b02c185f7d4bdcc1c86dfcde8084bd01a654
doc/src/caisar.onnx/reader.ml.html
Source file reader.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
(**************************************************************************) (* *) (* This file is part of CAISAR. *) (* *) (* Copyright (C) 2025 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* You can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Base module Format = Stdlib.Format module Fun = Stdlib.Fun module Oproto = Onnx_protoc (* Autogenerated during compilation *) module Oprotom = Oproto.Onnx.ModelProto exception ParseError of string type t = { n_inputs : int; (* Number of inputs. *) n_outputs : int; (* Number of outputs. *) nir : (Nir.Ngraph.t, string) Result.t; (* Intermediate representation. *) } (* ONNX format handling. *) module Convert : sig val nir_of_onnx_protoc : Oproto.Onnx.ModelProto.t -> Nir.Ngraph.t val get_input_output_dim : Oproto.Onnx.ModelProto.t -> int * int end = struct let get_shape_of_dims (s : Oproto.Onnx.TensorShapeProto.t) = Nir.Shape.of_list @@ List.map s ~f:(function | { value = `Dim_value v; _ } -> Int64.to_int_exn v | { value = `Dim_param s; _ } -> failwith (Fmt.str "Parameteric shape %s" s) | { value = `not_set; _ } -> failwith "Part of a shape not set") let get_shape_of_value (s : Oproto.Onnx.ValueInfoProto.t) = match s with | { type' = Some { value = `Tensor_type { shape = Some v; _ }; _ }; _ } -> get_shape_of_dims v | _ -> failwith "Value as not shape" let get_nested_dims (s : Oproto.Onnx.ValueInfoProto.t list) = match List.nth s 0 with | Some { type' = Some { value = `Tensor_type { shape = Some v; _ }; _ }; _ } -> v | _ -> [] let flattened_dim (s : Oproto.Onnx.TensorShapeProto.Dimension.t list) = Nir.Shape.size (get_shape_of_dims s) let get_input_output_dim (model : Oprotom.t) = let input_shape, output_shape = match model.graph with | Some g -> (get_nested_dims g.input, get_nested_dims g.output) | _ -> ([], []) in (* TODO: here we only get the flattened dimension of inputs and outputs, but more interesting parsing could be done later on. *) let input_flat_dim = flattened_dim input_shape in let output_flat_dim = flattened_dim output_shape in (input_flat_dim, output_flat_dim) let convert_tensor (ts : Oproto.Onnx.TensorProto.t) : Nir.Gentensor.t = let dims = Nir.Shape.of_list @@ List.map ~f:Int64.to_int_exn ts.dims in let size = Nir.Shape.size dims in let read_raw ~get kind = match ts.raw_data with | None -> failwith "TensorProto have no data field for the given data type" | Some data -> let t = Bigarray.(Array1.create kind c_layout size) in for i = 0 to size - 1 do let v = get data i in Bigarray.Array1.set t i v done; Nir.Tensor.of_array1 dims t in let read_gen ~get ~conv elt_size kind custom_data = match custom_data with | [] -> read_raw kind ~get:(fun raw coord_in_data -> let offset = elt_size * coord_in_data in get raw offset) | l when List.length l <> size -> failwith "not enough data according to dimension" | l -> let t = Bigarray.(Array1.create kind c_layout size) in List.iteri l ~f:(fun i f -> Bigarray.Array1.set t i (conv f)); Nir.Tensor.of_array1 dims t in match ts.data_type with | None -> failwith "TensorProto should have a type" | Some ty -> ( match ty with | UNDEFINED -> failwith "Invalid UNDEFINED data type" | FLOAT -> (*ambiguity depending on the handled IR whether float are float32 or float64: we represent both as float64 *) Float (read_gen 4 Float64 ts.float_data ~get:EndianBytes.LittleEndian.get_float ~conv:Fun.id) | UINT8 -> UInt8 (read_gen 1 Int8_unsigned ts.int32_data ~get:EndianBytes.LittleEndian.get_uint8 ~conv:Int32.to_int_exn) | INT8 -> Int8 (read_gen 1 Int8_signed ts.int32_data ~get:EndianBytes.LittleEndian.get_int8 ~conv:Int32.to_int_exn) | INT32 -> Int32 (read_gen 4 Int32 ts.int32_data ~get:EndianBytes.LittleEndian.get_int32 ~conv:Fun.id) | INT64 -> Int64 (read_gen 8 Int64 ts.int64_data ~get:EndianBytes.LittleEndian.get_int64 ~conv:Fun.id) | DOUBLE -> Float (read_gen 4 Float64 ts.float_data ~get:EndianBytes.LittleEndian.get_float ~conv:Fun.id) | UINT16 | INT16 | STRING | BOOL | FLOAT16 | UINT32 | UINT64 | COMPLEX64 | COMPLEX128 | BFLOAT16 -> failwith "Unsupported data type") type value = | Node of Oproto.Onnx.NodeProto.t | Tensor of Oproto.Onnx.TensorProto.t let produce_cfg (g : Oproto.Onnx.GraphProto.t) = let open Oproto.Onnx in let converted = Hashtbl.create (module String) in (* Associate output to node or initializer *) let of_output_value = Hashtbl.create (module String) in List.iter g.node ~f:(fun n -> match n.output with | [] -> failwith "Node without output" | [ o ] -> (* outputs must be uniq *) Hashtbl.add_exn of_output_value ~key:o ~data:(Node n) | _ -> failwith "Node with multiple outputs are not handled"); List.iter g.initializer' ~f:(fun t -> match t.name with | None -> failwith "Initializer must have a name" | Some o -> (* outputs must be uniq *) Hashtbl.add_exn of_output_value ~key:o ~data:(Tensor t)); assert (List.is_empty g.sparse_initializer); (* compute main output and input *) let output, output_shape = match g.output with | [] -> failwith "graph without output" | [ output ] -> (Option.value_exn output.name, get_shape_of_value output) | _ -> failwith "graph with more than one output" in (* Add input in already converted *) let input_name, input_shape = let input = List.filter_map g.input ~f:(fun i -> let name = Option.value_exn i.name in if Hashtbl.mem of_output_value name then None else Some (name, get_shape_of_value i)) in match input with | [] -> failwith "graph without input, can be accepted" | [ input ] -> input | _ -> failwith "graph with more than one input node (unsupported)" in Hashtbl.add_exn converted ~key:input_name ~data:(Nir.Node.create (Input { shape = input_shape })); (* converter *) let rec convert output = Hashtbl.findi_or_add ~default:convert_aux converted output and convert_aux output = let value = Hashtbl.find_exn of_output_value output in match value with | Node n -> let one_arg = function | [ input ] -> input | _ -> failwith "should have one argument" in let two_arg = function | [ input1; input2 ] -> (input1, input2) | _ -> failwith "should have two arguments" in let attrs = Hashtbl.of_alist_exn (module String) (List.map ~f:(fun a -> (Option.value_exn a.name, a)) n.attribute) in let get_attr ?default name m = match Hashtbl.find attrs name with | Some v -> m v | None -> ( match default with | Some v -> v | None -> Fmt.failwith "Required attribute %s missing" name) in let get_float ?default name : float = get_attr ?default name (function | { type' = Some AttributeProto.AttributeType.FLOAT; f = Some f; _ } -> f | _ -> failwith "Attribute wrongly typed") in let get_int ?default name : int = get_attr ?default name (function | { type' = Some AttributeProto.AttributeType.INT; i = Some i; _ } -> Int64.to_int_exn i | _ -> failwith "Attribute wrongly typed") in let get_ints ?default name : int list = get_attr ?default name (function | { type' = Some AttributeProto.AttributeType.INTS; ints = l; _ } -> List.map ~f:Int64.to_int_exn l | _ -> failwith "Attribute wrongly typed") in let get_tensor ?default name : Nir.Gentensor.t = get_attr ?default name (function | { type' = Some AttributeProto.AttributeType.TENSOR; t = Some t; _; } -> convert_tensor t | _ -> failwith "Attribute wrongly typed") in let get_bool ?default name = get_int ?default name = 1 in let n' = match n.op_type with | None -> failwith "Node without op_type (No-op?)" | Some s -> ( match s with | "Add" -> let input1, input2 = two_arg n.input in Nir.Node.Add { input1 = convert input1; input2 = convert input2 } | "Sub" -> let input1, input2 = two_arg n.input in Nir.Node.Sub { input1 = convert input1; input2 = convert input2 } | "Mul" -> let input1, input2 = two_arg n.input in Nir.Node.Mul { input1 = convert input1; input2 = convert input2 } | "Div" -> let input1, input2 = two_arg n.input in Nir.Node.Div { input1 = convert input1; input2 = convert input2 } | "Pow" -> let input1, input2 = two_arg n.input in Nir.Node.Pow { input1 = convert input1; input2 = convert input2 } | "Relu" -> let input1 = one_arg n.input in Nir.Node.ReLu { input = convert input1 } | "MatMul" -> let input1, input2 = two_arg n.input in Nir.Node.Matmul { input1 = convert input1; input2 = convert input2 } | "QLinearMatMul" -> let ( inputA, inputA_scale, inputA_zero_point, inputB, inputB_scale, inputB_zero_point, y_scale, y_zero_point ) = (* Awful pattern-matching to avoid multiple linear list scanning. Is this actually needed/useful? *) match n.input with | [ inputA; inputA_scale; inputA_zero_point; inputB; inputB_scale; inputB_zero_point; y_scale; y_zero_point; ] -> ( inputA, inputA_scale, inputA_zero_point, inputB, inputB_scale, inputB_zero_point, y_scale, y_zero_point ) | _ -> failwith "QLinearMatMul must have 8 inputs" in Nir.Node.QLinearMatMul { inputA = convert inputA; inputA_scale = convert inputA_scale; inputA_zero_point = convert inputA_zero_point; inputB = convert inputB; inputB_scale = convert inputB_scale; inputB_zero_point = convert inputB_zero_point; y_scale = convert y_scale; y_zero_point = convert y_zero_point; } | "Gemm" -> let inputA, inputB, inputC = match n.input with | [ inputA; inputB ] -> (inputA, inputB, None) | [ inputA; inputB; inputC ] -> (inputA, inputB, Some inputC) | _ -> failwith "Gemm must have 2 or 3 inputs" in Nir.Node.Gemm { inputA = convert inputA; inputB = convert inputB; inputC = Option.map ~f:convert inputC; alpha = get_float ~default:1.0 "alpha"; beta = get_float ~default:1.0 "beta"; transA = get_int ~default:0 "transA"; transB = get_int ~default:0 "transB"; } | "QGemm" -> let ( inputA, inputA_scale, inputA_zero_point, inputB, inputB_scale, inputB_zero_point, inputC, y_scale, y_zero_point ) = (* Awful pattern-matching to avoid multiple linear list scanning. Is this actually needed/useful? *) match n.input with | [ inputA; inputA_scale; inputA_zero_point; inputB; inputB_scale; inputB_zero_point; ] -> ( inputA, inputA_scale, inputA_zero_point, inputB, inputB_scale, inputB_zero_point, None, None, None ) | [ inputA; inputA_scale; inputA_zero_point; inputB; inputB_scale; inputB_zero_point; inputC; ] -> ( inputA, inputA_scale, inputA_zero_point, inputB, inputB_scale, inputB_zero_point, Some inputC, None, None ) | [ inputA; inputA_scale; inputA_zero_point; inputB; inputB_scale; inputB_zero_point; inputC; y_scale; ] -> ( inputA, inputA_scale, inputA_zero_point, inputB, inputB_scale, inputB_zero_point, Some inputC, Some y_scale, None ) | [ inputA; inputA_scale; inputA_zero_point; inputB; inputB_scale; inputB_zero_point; inputC; y_scale; y_zero_point; ] -> ( inputA, inputA_scale, inputA_zero_point, inputB, inputB_scale, inputB_zero_point, Some inputC, Some y_scale, Some y_zero_point ) | _ -> failwith "QGemm must have between 6 and 9 inputs" in let inputA = convert inputA in let inputA_scale = convert inputA_scale in let inputA_zero_point = convert inputA_zero_point in let inputB = convert inputB in let inputB_scale = convert inputB_scale in let inputB_zero_point = convert inputB_zero_point in let inputC = Option.map ~f:convert inputC in let y_scale = Option.map ~f:convert y_scale in let y_zero_point = Option.map ~f:convert y_zero_point in let alpha = get_float ~default:1.0 "alpha" in let transA = get_int ~default:0 "transA" in let transB = get_int ~default:0 "transB" in Nir.Node.QGemm { inputA; inputA_scale; inputA_zero_point; inputB; inputB_scale; inputB_zero_point; inputC; y_scale; y_zero_point; alpha; transA; transB; } | "LogSoftmax" -> Nir.Node.LogSoftmax | "Transpose" -> Nir.Node.Transpose { input = convert (one_arg n.input); perm = get_ints "perm" } | "Squeeze" -> let data, axes = match n.input with | [ data ] -> (convert data, None) | [ data; axes ] -> (convert data, Some (convert axes)) | _ -> failwith "Squeeze must have 1 or 2 inputs" in Nir.Node.Squeeze { data; axes } | "MaxPool" -> MaxPool | "Constant" -> Constant { data = get_tensor "value" } | "Conv" -> Conv | "Flatten" -> Flatten { input = convert @@ one_arg n.input; axis = get_int "axis" } | "Reshape" -> let input, shape = two_arg n.input in Reshape { input = convert input; shape = convert shape } | "Abs" -> Nir.Node.Abs { input = convert @@ one_arg n.input } | "Log" -> Nir.Node.Log { input = convert @@ one_arg n.input } | "RandomNormal" -> Nir.Node.RandomNormal { dtype = get_int "dtype"; mean = get_float "mean"; scale = get_float "scale"; seed = get_float "seed"; shape = Array.of_list (get_ints "shape"); } | "ArgMax" -> ArgMax { input = convert @@ one_arg n.input; axis = get_int "axis"; keepdims = get_bool ~default:1 "keepdims"; } | "Concat" -> Concat { inputs = n.input |> List.map ~f:(fun i -> convert i); axis = get_int "axis"; } | "Sign" -> Sign { input = convert @@ one_arg n.input } | "QuantizeLinear" -> let x, y_scale, y_zero_point = match n.input with | [ x; y_scale ] -> (x, y_scale, None) | [ x; y_scale; y_zero_point ] -> (x, y_scale, Some y_zero_point) | _ -> failwith "QuantizeLinear must have 2 or 3 inputs" in Nir.Node.QuantizeLinear { x = convert x; y_scale = convert y_scale; y_zero_point = Option.map ~f:convert y_zero_point; axis = get_int ~default:1 "axis"; } | "DequantizeLinear" -> let x, x_scale, x_zero_point = match n.input with | [ x; x_scale ] -> (x, x_scale, None) | [ x; x_scale; x_zero_point ] -> (x, x_scale, Some x_zero_point) | _ -> failwith "DequantizeLinear must have 2 or 3 inputs" in Nir.Node.DequantizeLinear { x = convert x; x_scale = convert x_scale; x_zero_point = Option.map ~f:convert x_zero_point; axis = get_int ~default:1 "axis"; } (* TODO: ReduceSum, GatherND *) | s -> failwith (Printf.sprintf "Unknown operators %s" s)) in Nir.Node.create n' | Tensor t -> Nir.Node.create (Constant { data = convert_tensor t }) in let output' = convert output in assert (Nir.Shape.equal output'.shape output_shape); Nir.Ngraph.create output' let nir_of_onnx_protoc (model : Oprotom.t) = (match model.ir_version with | None -> failwith "IR version not specified" | Some (3L | 4L | 5L | 6L | 7L | 8L | 9L | 10L) -> () | Some i -> failwith (Printf.sprintf "Unsupported IR version %Li" i)); assert (not (List.is_empty model.opset_import)); if false then List.iter model.opset_import ~f:(fun opset -> Format.printf "opset:%s (%Li)@." (Option.value ~default:"" opset.domain) (Option.value_exn opset.version)); match model.graph with | Some g -> produce_cfg g | None -> raise (ParseError "No graph in ONNX input file found") end let parse_in_channel in_channel = let open Result in try let buf = Stdio.In_channel.input_all in_channel in let reader = Ocaml_protoc_plugin.Reader.create buf in match Oprotom.from_proto reader with | Ok r -> let n_inputs, n_outputs = Convert.get_input_output_dim r in let nir = try Ok (Convert.nir_of_onnx_protoc r) with | ParseError s | Sys_error s -> Error s | Failure msg -> Error (Format.sprintf "Unexpected error: %s" msg) in Ok { n_inputs; n_outputs; nir } | _ -> Error "Cannot read protobuf" with | Sys_error s -> Error s | Failure msg -> Error (Format.sprintf "Unexpected error: %s" msg) let from_file filename = let in_channel = Stdlib.open_in filename in Fun.protect ~finally:(fun () -> Stdlib.close_in in_channel) (fun () -> parse_in_channel in_channel)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>