package caisar
A platform for characterizing the safety and robustness of artificial intelligence based software
Install
Dune Dependency
Authors
Maintainers
Sources
caisar-4.0.tbz
sha256=58ba1e38721795b306c860b56aaeba971be586cd55fb96e3ec8af72dd005101b
sha512=f1b3b9899660745598cebe7ecb52a39e9e16dcb7352381ea75a80d2afa988437130c00bf66355991421d4cb3dc06b02c185f7d4bdcc1c86dfcde8084bd01a654
doc/caisar.nnet/Nnet/index.html
Module Nnet
Source
Module to parse neural networks written in the NNet format (see the specification at https://github.com/sisl/NNet).
Source
type t = private {
n_layers : int;
(*Number of layers.
*)n_inputs : int;
(*Number of inputs.
*)n_outputs : int;
(*Number of outputs.
*)max_layer_size : int;
(*Maximum layer size.
*)layer_sizes : int list;
(*Size of each layer.
*)min_input_values : float list option;
(*Minimum values of inputs.
*)max_input_values : float list option;
(*Maximum values of inputs.
*)mean_values : (float list * float) option;
(*Mean values of inputs and one value for all outputs.
*)range_values : (float list * float) option;
(*Range values of inputs and one value for all outputs.
*)weights_biases : float list list;
(*All weights and biases of NNet model.
*)nir : Nir.Ngraph.t;
}
NNet model metadata.
Convert a well-formed NNet into a Nir.
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>