package caisar
A platform for characterizing the safety and robustness of artificial intelligence based software
Install
Dune Dependency
Authors
Maintainers
Sources
caisar-2.1.tbz
sha256=1b25c8668d428bcfc83c95147b6e45ff0a3bfa05ecd11369d12e963e29819e2e
sha512=edc7d7c0e96802811de3cb1caa3d14cc3d867ee7310748e8188eca9246a362549545c7816c8037511931dc4b7770b5ccc11b0d03abe8843b7c4db7880bf8e1fd
doc/src/caisar.onnx/reader.ml.html
Source file reader.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
(**************************************************************************) (* *) (* This file is part of CAISAR. *) (* *) (* Copyright (C) 2024 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* You can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Base module Format = Stdlib.Format module Fun = Stdlib.Fun module Oproto = Onnx_protoc (* Autogenerated during compilation *) module Oprotom = Oproto.Onnx.ModelProto exception ParseError of string type t = { n_inputs : int; (* Number of inputs. *) n_outputs : int; (* Number of outputs. *) nir : (Nir.Ngraph.t, string) Result.t; (* Intermediate representation. *) } (* ONNX format handling. *) module Convert : sig val nir_of_onnx_protoc : Oproto.Onnx.ModelProto.t -> Nir.Ngraph.t val get_input_output_dim : Oproto.Onnx.ModelProto.t -> int * int end = struct let get_shape_of_dims (s : Oproto.Onnx.TensorShapeProto.t) = Nir.Shape.of_list @@ List.map s ~f:(function | { value = `Dim_value v; _ } -> Int64.to_int_exn v | { value = `Dim_param _; _ } -> failwith "Parameteric shape" | { value = `not_set; _ } -> failwith "Part of a shape not set") let get_shape_of_value (s : Oproto.Onnx.ValueInfoProto.t) = match s with | { type' = Some { value = `Tensor_type { shape = Some v; _ }; _ }; _ } -> get_shape_of_dims v | _ -> failwith "Value as not shape" let get_nested_dims (s : Oproto.Onnx.ValueInfoProto.t list) = match List.nth s 0 with | Some { type' = Some { value = `Tensor_type { shape = Some v; _ }; _ }; _ } -> v | _ -> [] let flattened_dim (s : Oproto.Onnx.TensorShapeProto.Dimension.t list) = Nir.Shape.size (get_shape_of_dims s) let get_input_output_dim (model : Oprotom.t) = let input_shape, output_shape = match model.graph with | Some g -> (get_nested_dims g.input, get_nested_dims g.output) | _ -> ([], []) in (* TODO: here we only get the flattened dimension of inputs and outputs, but more interesting parsing could be done later on. *) let input_flat_dim = flattened_dim input_shape in let output_flat_dim = flattened_dim output_shape in (input_flat_dim, output_flat_dim) let convert_tensor (ts : Oproto.Onnx.TensorProto.t) : Nir.Gentensor.t = let open Oproto.Onnx in let dims = Nir.Shape.of_list @@ List.map ~f:Int64.to_int_exn ts.dims in let size = Nir.Shape.size dims in let read_raw ~get kind = match ts.raw_data with | None -> failwith "TensorProto have no data field for the given data type" | Some data -> let t = Bigarray.(Array1.create kind c_layout size) in for i = 0 to size - 1 do let v = get data i in Bigarray.Array1.set t i v done; Nir.Tensor.of_array1 dims t in let read_gen ~get elt_size kind custom_data = match custom_data with | [] -> read_raw kind ~get:(fun raw coord_in_data -> let offset = elt_size * coord_in_data in get raw offset) | l when List.length l <> size -> failwith "not enough data according to dimension" | l -> let t = Bigarray.(Array1.create kind c_layout size) in List.iteri l ~f:(fun i f -> Bigarray.Array1.set t i f); Nir.Tensor.of_array1 dims t in match Option.map ~f:TensorProto.DataType.from_int ts.data_type with | None -> failwith "TensorProto should have a type" | Some (Error s) -> Fmt.failwith "TensorProto type is unknown: %a" Ocaml_protoc_plugin.Result.pp_error s | Some (Ok ty) -> ( match ty with | UNDEFINED -> failwith "Invalid UNDEFINED data type" | FLOAT -> Float (read_gen 4 Float64 ts.float_data ~get:EndianBytes.LittleEndian.get_float) | INT64 -> Int64 (read_gen 8 Int64 ts.int64_data ~get:EndianBytes.LittleEndian.get_int64) | UINT8 | INT8 | UINT16 | INT16 | INT32 | STRING | BOOL | FLOAT16 | DOUBLE | UINT32 | UINT64 | COMPLEX64 | COMPLEX128 | BFLOAT16 -> failwith "Unsupported data type") type value = | Node of Oproto.Onnx.NodeProto.t | Tensor of Oproto.Onnx.TensorProto.t let produce_cfg (g : Oproto.Onnx.GraphProto.t) = let open Oproto.Onnx in let converted = Hashtbl.create (module String) in (* Associate output to node or initializer *) let of_output_value = Hashtbl.create (module String) in List.iter g.node ~f:(fun n -> match n.output with | [] -> failwith "Node without output" | [ o ] -> (* outputs must be uniq *) Hashtbl.add_exn of_output_value ~key:o ~data:(Node n) | _ -> failwith "Node with multiple outputs are not handled"); List.iter g.initializer' ~f:(fun t -> match t.name with | None -> failwith "Initializer must have a name" | Some o -> (* outputs must be uniq *) Hashtbl.add_exn of_output_value ~key:o ~data:(Tensor t)); assert (List.is_empty g.sparse_initializer); (* compute main output and input *) let output, output_shape = match g.output with | [] -> failwith "graph without output" | [ output ] -> (Option.value_exn output.name, get_shape_of_value output) | _ -> failwith "graph with more than one output" in (* Add input in already converted *) let input_name, input_shape = let input = List.filter_map g.input ~f:(fun i -> let name = Option.value_exn i.name in if Hashtbl.mem of_output_value name then None else Some (name, get_shape_of_value i)) in match input with | [] -> failwith "graph without input, can be accepted" | [ input ] -> input | _ -> failwith "graph with more than one input node (unsupported)" in Hashtbl.add_exn converted ~key:input_name ~data:(Nir.Node.create (Input { shape = input_shape })); (* converter *) let rec convert output = Hashtbl.findi_or_add ~default:convert_aux converted output and convert_aux output = let value = Hashtbl.find_exn of_output_value output in match value with | Node n -> let one_arg = function | [ input ] -> input | _ -> failwith "should have one argument" in let two_arg = function | [ input1; input2 ] -> (input1, input2) | _ -> failwith "should have two arguments" in let attrs = Hashtbl.of_alist_exn (module String) (List.map ~f:(fun a -> (Option.value_exn a.name, a)) n.attribute) in let get_attr ?default name m = match Hashtbl.find attrs name with | Some v -> m v | None -> ( match default with | Some v -> v | None -> Fmt.failwith "Required attribute %s missing" name) in let get_float ?default name : float = get_attr ?default name (function | { type' = Some AttributeProto.AttributeType.FLOAT; f = Some f; _ } -> f | _ -> failwith "Attribute wrongly typed") in let get_int ?default name : int = get_attr ?default name (function | { type' = Some AttributeProto.AttributeType.INT; i = Some i; _ } -> Int64.to_int_exn i | _ -> failwith "Attribute wrongly typed") in let get_ints ?default name : int list = get_attr ?default name (function | { type' = Some AttributeProto.AttributeType.INTS; ints = l; _ } -> List.map ~f:Int64.to_int_exn l | _ -> failwith "Attribute wrongly typed") in let get_tensor ?default name : Nir.Gentensor.t = get_attr ?default name (function | { type' = Some AttributeProto.AttributeType.TENSOR; t = Some t; _; } -> convert_tensor t | _ -> failwith "Attribute wrongly typed") in let n' = match n.op_type with | None -> failwith "Node without op_type (No-op?)" | Some s -> ( match s with | "Add" -> let input1, input2 = two_arg n.input in Nir.Node.Add { input1 = convert input1; input2 = convert input2 } | "Sub" -> let input1, input2 = two_arg n.input in Nir.Node.Sub { input1 = convert input1; input2 = convert input2 } | "Mul" -> let input1, input2 = two_arg n.input in Nir.Node.Mul { input1 = convert input1; input2 = convert input2 } | "Div" -> let input1, input2 = two_arg n.input in Nir.Node.Div { input1 = convert input1; input2 = convert input2 } | "Relu" -> let input1 = one_arg n.input in Nir.Node.ReLu { input = convert input1 } | "MatMul" -> let input1, input2 = two_arg n.input in Nir.Node.Matmul { input1 = convert input1; input2 = convert input2 } | "Gemm" -> let inputA, inputB, inputC = match n.input with | [ inputA; inputB ] -> (inputA, inputB, None) | [ inputA; inputB; inputC ] -> (inputA, inputB, Some inputC) | _ -> failwith "Gemm must have 2 or 3 inputs" in Nir.Node.Gemm { inputA = convert inputA; inputB = convert inputB; inputC = Option.map ~f:convert inputC; alpha = get_float ~default:1.0 "alpha"; beta = get_float ~default:1.0 "beta"; transA = get_int ~default:0 "transA"; transB = get_int ~default:0 "transB"; } | "LogSoftmax" -> Nir.Node.LogSoftmax | "Transpose" -> Nir.Node.Transpose { input = convert (one_arg n.input); perm = get_ints "perm" } | "Squeeze" -> let data, axes = match n.input with | [ data ] -> (convert data, None) | [ data; axes ] -> (convert data, Some (convert axes)) | _ -> failwith "Squeeze must have 1 or 2 inputs" in Nir.Node.Squeeze { data; axes } | "MaxPool" -> MaxPool | "Constant" -> Constant { data = get_tensor "value" } | "Conv" -> Conv | "Flatten" -> Flatten { input = convert @@ one_arg n.input; axis = get_int "axis" } (* | "Reshape" -> NCFG.Node.Reshape | "Identity" -> NCFG.Node.Identity | "Gather" -> NCFG.Node.Gather *) | "Abs" -> Nir.Node.Abs { input = convert @@ one_arg n.input } | "Log" -> Nir.Node.Log { input = convert @@ one_arg n.input } | "RandomNormal" -> Nir.Node.RandomNormal { dtype = get_int "dtype"; mean = get_float "mean"; scale = get_float "scale"; seed = get_float "seed"; shape = Array.of_list (get_ints "shape"); } (* TODO: ReduceSum, GatherND *) | s -> failwith (Printf.sprintf "Unknown operators %s" s)) in Nir.Node.create n' | Tensor t -> Nir.Node.create (Constant { data = convert_tensor t }) in let output' = convert output in assert (Nir.Shape.equal output'.shape output_shape); Nir.Ngraph.create output' let nir_of_onnx_protoc (model : Oprotom.t) = (match model.ir_version with | None -> failwith "IR version not specified" | Some (3L | 4L | 5L | 6L | 7L | 8L) -> () | Some i -> failwith (Printf.sprintf "Unsupported IR version %Li" i)); assert (not (List.is_empty model.opset_import)); if false then List.iter model.opset_import ~f:(fun opset -> Format.printf "opset:%s (%Li)@." (Option.value ~default:"" opset.domain) (Option.value_exn opset.version)); match model.graph with | Some g -> produce_cfg g | None -> raise (ParseError "No graph in ONNX input file found") end let parse_in_channel in_channel = let open Result in try let buf = Stdio.In_channel.input_all in_channel in let reader = Ocaml_protoc_plugin.Reader.create buf in match Oprotom.from_proto reader with | Ok r -> let n_inputs, n_outputs = Convert.get_input_output_dim r in let nir = try Ok (Convert.nir_of_onnx_protoc r) with | ParseError s | Sys_error s -> Error s | Failure msg -> Error (Format.sprintf "Unexpected error: %s" msg) in Ok { n_inputs; n_outputs; nir } | _ -> Error "Cannot read protobuf" with | Sys_error s -> Error s | Failure msg -> Error (Format.sprintf "Unexpected error: %s" msg) let from_file filename = let in_channel = Stdlib.open_in filename in Fun.protect ~finally:(fun () -> Stdlib.close_in in_channel) (fun () -> parse_in_channel in_channel)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>