package caisar
A platform for characterizing the safety and robustness of artificial intelligence based software
Install
Dune Dependency
Authors
Maintainers
Sources
caisar-2.1.tbz
sha256=1b25c8668d428bcfc83c95147b6e45ff0a3bfa05ecd11369d12e963e29819e2e
sha512=edc7d7c0e96802811de3cb1caa3d14cc3d867ee7310748e8188eca9246a362549545c7816c8037511931dc4b7770b5ccc11b0d03abe8843b7c4db7880bf8e1fd
doc/caisar.nnet/Nnet/index.html
Module Nnet
Source
Module to parse neural networks written in the NNet format https://github.com/sisl/NNet
Source
type t = private {
n_layers : int;
(*Number of layers.
*)n_inputs : int;
(*Number of inputs.
*)n_outputs : int;
(*Number of outputs.
*)max_layer_size : int;
(*Maximum layer size.
*)layer_sizes : int list;
(*Size of each layer.
*)min_input_values : float list option;
(*Minimum values of inputs.
*)max_input_values : float list option;
(*Maximum values of inputs.
*)mean_values : (float list * float) option;
(*Mean values of inputs and one value for all outputs.
*)range_values : (float list * float) option;
(*Range values of inputs and one value for all outputs.
*)weights_biases : float list list;
(*All weights and biases of NNet model.
*)nir : Nir.Ngraph.t;
}
NNet model metadata.
Convert an well-formed NNet into a Nir.
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>