package caisar
A platform for characterizing the safety and robustness of artificial intelligence based software
Install
Dune Dependency
Authors
Maintainers
Sources
caisar-2.0.tbz
sha256=3d24d2940eed0921acba158a8970687743c401c6a99d0aac8ed6dcfedca1429c
sha512=0b4484c0e080b8ba22722fe9d5665f9015ebf1648ac89c566a978dd54e3e061acb63edd92e078eed310e26f3e8ad2c48f3682a24af2acb1f0633da12f7966a38
doc/caisar.nnet/Nnet/index.html
Module Nnet
Source
Module to parse neural networks written in the NNet format https://github.com/sisl/NNet
Source
type t = private {
n_layers : int;
(*Number of layers.
*)n_inputs : int;
(*Number of inputs.
*)n_outputs : int;
(*Number of outputs.
*)max_layer_size : int;
(*Maximum layer size.
*)layer_sizes : int list;
(*Size of each layer.
*)min_input_values : float list option;
(*Minimum values of inputs.
*)max_input_values : float list option;
(*Maximum values of inputs.
*)mean_values : (float list * float) option;
(*Mean values of inputs and one value for all outputs.
*)range_values : (float list * float) option;
(*Range values of inputs and one value for all outputs.
*)weights_biases : float list list;
(*All weights and biases of NNet model.
*)nir : Nir.Ngraph.t;
}
NNet model metadata.
Convert an well-formed NNet into a Nir.
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>