package bonsai
A library for building dynamic webapps, using Js_of_ocaml
Install
Dune Dependency
Authors
Maintainers
Sources
bonsai-v0.16.0.tar.gz
sha256=1d68aab713659951eba5b85f21d6f9382e0efa8579a02c3be65d9071c6e86303
doc/src/bonsai.quickcheck/bonsai_quickcheck_internal.ml.html
Source file bonsai_quickcheck_internal.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
open! Core module Q = Base_quickcheck let log = ref [] let clear_log () = log := [] let read_log () = Sexp.List !log let log_s sexp = log := sexp :: !log let weight_scalar = 10. let size_scalar = 4 module Map_comparator = Comparator.Derived2_phantom (struct type ('a, 'b, 'c) t = ('a, 'b, 'c) Map.t let compare _ _ _ _ = assert false let sexp_of_t _ _ _ = assert false end) module Effect_func_comparator = Comparator.Derived (struct type 'a t = 'a -> unit Bonsai.Effect.t let compare _ _ _ = assert false let sexp_of_t _ _ = assert false end) module Witness = struct type ('a, 'cmp) t = | Unit : (unit, Unit.comparator_witness) t | Int : (int, Int.comparator_witness) t | Either : ('a, 'cmp_a) t * ('b, 'cmp_b) t -> (('a, 'b) Either.t, ('cmp_a, 'cmp_b) Either.comparator_witness) t | Tuple : ('a, 'cmp_a) t * ('b, 'cmp_b) t -> (('a, 'b) Tuple2.t, ('cmp_a, 'cmp_b) Tuple2.comparator_witness) t | Map : ('k, 'k_cmp) t * ('v, 'v_cmp) t -> (('k, 'v, 'k_cmp) Map.t, ('k_cmp, 'v_cmp) Map_comparator.comparator_witness) t | Effect_func : ('a, 'cmp) t -> ('a -> unit Bonsai.Effect.t, 'cmp Effect_func_comparator.comparator_witness) t let num_constructors = 6. let rec equal : type w cmp. (w, cmp) t -> w -> w -> bool = function | Unit -> Unit.equal | Int -> ( = ) | Either (first_witness, second_witness) -> Either.equal (equal first_witness) (equal second_witness) | Tuple (first_witness, second_witness) -> Tuple2.equal ~eq1:(equal first_witness) ~eq2:(equal second_witness) | Map (_key_witness, value_witness) -> Map.equal (equal value_witness) | Effect_func _ -> fun _ _ -> true ;; let to_string (type w cmp) (witness : (w, cmp) t) = match witness with | Unit -> "Unit" | Int -> "Int" | Either (_, _) -> "Either" | Tuple (_, _) -> "Tuple" | Map (_, _) -> "Map" | Effect_func _ -> "Effect_func" ;; type ('a, 'b, 'cmp_a, 'cmp_b) same = T : ('a, 'a, 'cmp_a, 'cmp_a) same exception Not_same let rec same_witness_exn : type a b cmp_a cmp_b. (a, cmp_a) t -> (b, cmp_b) t -> (a, b, cmp_a, cmp_b) same = fun witness1 witness2 -> match witness1, witness2 with | Unit, Unit -> T | Int, Int -> T | Either (first_a, second_a), Either (first_b, second_b) -> let T = same_witness_exn first_a first_b in let T = same_witness_exn second_a second_b in T | Tuple (first_a, second_a), Tuple (first_b, second_b) -> let T = same_witness_exn first_a first_b in let T = same_witness_exn second_a second_b in T | Map (key_a, value_a), Map (key_b, value_b) -> let T = same_witness_exn key_a key_b in let T = same_witness_exn value_a value_b in T | Effect_func inner_a, Effect_func inner_b -> let T = same_witness_exn inner_a inner_b in T | _, _ -> raise_notrace Not_same ;; let is_same_witness (type a b cmp_a cmp_b) (witness1 : (a, cmp_a) t) (witness2 : (b, cmp_b) t) : bool = match same_witness_exn witness1 witness2 with | T -> true | exception Not_same -> false ;; let same_witness : type a b cmp_a cmp_b. (a, cmp_a) t -> (b, cmp_b) t -> (a, b, cmp_a, cmp_b) same option = fun witness1 witness2 -> match same_witness_exn witness1 witness2 with | T -> Some T | exception Not_same -> None ;; let same_witness_exn (type a b cmp_a cmp_b) (witness1 : (a, cmp_a) t) (witness2 : (b, cmp_b) t) : (a, b, cmp_a, cmp_b) same = match same_witness_exn witness1 witness2 with | T -> T | exception Not_same -> raise_s [%message "Witnesses passed to [same_witness_exn] are not the same!"] ;; let is_state_witness (type a cmp) (witness : (a, cmp) t) = match witness with | Tuple (first_witness, Effect_func inner_witness) -> is_same_witness first_witness inner_witness | _ -> false ;; type packed = T : ('a, 'cmp) t -> packed let to_goal_list witness = let rec iter : type a cmp. (a, cmp) t -> packed list -> packed list = fun witness goal_list -> match is_state_witness witness with | true -> T witness :: goal_list | false -> (match witness with | Tuple (first_witness, second_witness) -> let goal_list = iter first_witness goal_list in iter second_witness goal_list | Either (first_witness, second_witness) -> let goal_list = iter first_witness goal_list in iter second_witness goal_list | Map (key_witness, value_witness) -> let goal_list = iter key_witness goal_list in iter value_witness goal_list | Effect_func inner_witness -> iter inner_witness goal_list | Unit | Int -> T witness :: goal_list) in iter witness [] ;; type modifier = | Enabled | Disabled (* [make_witness] generates a witness of random type and then passes it into a function to use to make a [Q.Generator.t] of any type *) type 'b witness_handler = { f : 'a 'cmp. ('a, 'cmp) t -> 'b Q.Generator.t } let rec make_witness : type b. no_comparator_types:modifier -> b witness_handler -> b Q.Generator.t = fun ~no_comparator_types handler -> let no_comp_weight = match no_comparator_types with | Enabled -> 1. | Disabled -> 0. in let open Q.Generator.Let_syntax in let base_cases = [ 1., handler.f Unit; 1., handler.f Int ] in match%bind Q.Generator.size with | 0 -> Q.Generator.weighted_union base_cases | original_size -> let continue witness = Q.Generator.with_size ~size:original_size (handler.f witness) in let either_gen = make_witness ~no_comparator_types { f = (fun first_witness -> make_witness ~no_comparator_types { f = (fun second_witness -> continue (Either (first_witness, second_witness))) }) } in let tuple_gen = make_witness ~no_comparator_types { f = (fun first_witness -> make_witness ~no_comparator_types { f = (fun second_witness -> continue (Tuple (first_witness, second_witness))) }) } in let map_gen = make_witness ~no_comparator_types:Disabled { f = (fun key_witness -> make_witness ~no_comparator_types:Enabled { f = (fun value_witness -> continue (Map (key_witness, value_witness))) }) } in let effect_func_gen = make_witness ~no_comparator_types:Enabled { f = (fun inner_witness -> continue (Tuple (inner_witness, Effect_func inner_witness))) } in Q.Generator.with_size ~size:(original_size - 1) (Q.Generator.weighted_union (base_cases @ [ 1., either_gen ; 1., tuple_gen ; no_comp_weight, map_gen ; no_comp_weight, effect_func_gen ])) ;; let make_witness handler = make_witness ~no_comparator_types:Enabled handler type 'c effect_witness_handler = { f : 'f 's 'cmp 'b 'cmp_b. ('f * 's, 'cmp) t -> ('b, 'cmp_b) t -> 'c Q.Generator.t } let rec make_effect_witness : type c. c effect_witness_handler -> c Q.Generator.t = fun handler -> let open Q.Generator.Let_syntax in let base_cases = let base_gen = make_witness { f = (fun inner_witness -> let effect_wit = Effect_func inner_witness in handler.f (Tuple (inner_witness, effect_wit)) effect_wit) } in [ 1., base_gen ] in match%bind Q.Generator.size with | 0 -> Q.Generator.weighted_union base_cases | original_size -> let recur_gen = make_witness { f = (fun inner_witness -> make_effect_witness { f = (fun state_witness effect_witness -> let new_effect_witness = Effect_func inner_witness in Q.Generator.with_size ~size:original_size (handler.f (Tuple (Tuple (inner_witness, new_effect_witness), state_witness)) (Tuple (new_effect_witness, effect_witness)))) }) } in Q.Generator.with_size ~size:(original_size - 1) (Q.Generator.weighted_union (base_cases @ [ 1., recur_gen ])) ;; end module type Quickcheckable = sig type context type goal type 'a t type packed = | T : { unpacked : 'a t ; witness : ('a, 'cmp) Witness.t } -> packed val quickcheck_generator : context -> goal -> ('a, 'cmp) Witness.t -> 'a t Q.Generator.t val packed_quickcheck_shrinker : packed Q.Shrinker.t val quickcheck_observer : ('a, 'cmp) Witness.t -> 'a t Q.Observer.t end module type Packed_quickcheckable = sig type context type goal type packed val quickcheck_generator : context -> goal -> packed Q.Generator.t val quickcheck_observer : packed Q.Observer.t Lazy.t end module With_witness (M : Quickcheckable) : Packed_quickcheckable with type packed := M.packed and type context := M.context and type goal := M.goal = struct let quickcheck_generator context goal = let open Q.Generator.Let_syntax in Witness.make_witness { f = (fun witness -> let%map unpacked = M.quickcheck_generator context goal witness in M.T { unpacked; witness }) } ;; let quickcheck_observer = lazy (Q.Observer.create (fun (M.T { unpacked; witness }) ~size ~hash -> Q.Observer.observe (M.quickcheck_observer witness) unpacked ~size ~hash)) ;; end module type Comparator_and_model = sig type t include Comparator.S with type t := t include Bonsai.Model with type t := t end let rec make_comparator_and_model : type w cmp. (w, cmp) Witness.t -> (module Comparator_and_model with type t = w and type comparator_witness = cmp) = fun witness -> match witness with | Unit -> (module Unit) | Int -> (module Int) | Either (first_witness, second_witness) -> let module First = (val make_comparator_and_model first_witness) in let module Second = (val make_comparator_and_model second_witness) in (module struct type t = (First.t, Second.t) Either.t [@@deriving sexp] type comparator_witness = (First.comparator_witness, Second.comparator_witness) Either.comparator_witness let comparator : (t, comparator_witness) Comparator.t = Either.comparator First.comparator Second.comparator ;; let equal = Witness.equal witness end) | Tuple (first_witness, second_witness) -> let module First = (val make_comparator_and_model first_witness) in let module Second = (val make_comparator_and_model second_witness) in (module struct type t = (First.t, Second.t) Tuple2.t [@@deriving sexp] type comparator_witness = (First.comparator_witness, Second.comparator_witness) Tuple2.comparator_witness let comparator : (t, comparator_witness) Comparator.t = Tuple2.comparator First.comparator Second.comparator ;; let equal = Witness.equal witness end) | Map (key_witness, value_witness) -> let module K = (val make_comparator_and_model key_witness) in let module V = (val make_comparator_and_model value_witness) in (module struct type t = V.t Map.M(K).t [@@deriving sexp] let equal = Witness.equal witness type comparator_witness = (K.comparator_witness, V.comparator_witness) Map_comparator.comparator_witness let comparator = Map_comparator.comparator K.comparator V.comparator end) | Effect_func inner_witness -> let module M = (val make_comparator_and_model inner_witness) in (module struct type t = M.t -> unit Bonsai.Effect.t [@@deriving sexp] let equal = Witness.equal witness type comparator_witness = M.comparator_witness Effect_func_comparator.comparator_witness let comparator = Effect_func_comparator.comparator M.comparator end) ;; let real_data_to_sexp (type a cmp) (witness : (a, cmp) Witness.t) (data : a) = let module M = (val make_comparator_and_model witness) in M.sexp_of_t data ;; let real_data_to_string (type a cmp) (witness : (a, cmp) Witness.t) (data : a) : string = Sexp.to_string_hum (real_data_to_sexp witness data) ;; let rec real_data_observer : type w cmp. (w, cmp) Witness.t -> w Q.Observer.t = function | Unit -> quickcheck_observer_unit | Int -> quickcheck_observer_int | Either (first_witness, second_witness) -> Either.quickcheck_observer (real_data_observer first_witness) (real_data_observer second_witness) | Tuple (first_witness, second_witness) -> Q.Observer.both (real_data_observer first_witness) (real_data_observer second_witness) | Map (key_witness, value_witness) -> Map.quickcheck_observer (real_data_observer key_witness) (real_data_observer value_witness) | Effect_func _inner_witness -> Q.Observer.create (fun _effect_func ~size:_ ~hash -> hash_fold_int hash 0) ;; let rec real_data_generator : type w cmp. (w, cmp) Witness.t -> w Q.Generator.t = function | Unit -> quickcheck_generator_unit | Int -> quickcheck_generator_int | Either (first_witness, second_witness) -> Either.quickcheck_generator (real_data_generator first_witness) (real_data_generator second_witness) | Tuple (first_witness, second_witness) -> Q.Generator.both (real_data_generator first_witness) (real_data_generator second_witness) | Map (key_witness, value_witness) -> Map.quickcheck_generator (module (val make_comparator_and_model key_witness)) (real_data_generator key_witness) (real_data_generator value_witness) | Effect_func inner_witness -> Q.Generator.return (Bonsai.Effect.of_sync_fun (fun input -> log_s (real_data_to_sexp inner_witness input))) ;; let rec real_data_shrinker : type w cmp. (w, cmp) Witness.t -> w Q.Shrinker.t = function | Unit -> quickcheck_shrinker_unit | Int -> quickcheck_shrinker_int | Either (first_witness, second_witness) -> Either.quickcheck_shrinker (real_data_shrinker first_witness) (real_data_shrinker second_witness) | Tuple (first_witness, second_witness) -> Q.Shrinker.both (real_data_shrinker first_witness) (real_data_shrinker second_witness) | Map (key_witness, value_witness) -> Map.quickcheck_shrinker (real_data_shrinker key_witness) (real_data_shrinker value_witness) | Effect_func _inner_witness -> Q.Shrinker.atomic ;; let weighted weight make_gen = if Float.equal weight 0. then [] else [ weight, make_gen () ] ;; module Function = struct type ('input, 'output) t = | Identity : ('input, 'input) t | Const : 'output -> ('input, 'output) t | Add_const : int -> (int, int) t | Snd : ('a * 'b, 'b) t | Map_tuple : ('a, 'b) t * ('c, 'd) t -> ('a * 'c, 'b * 'd) t | Make_either : [ `First | `Second ] -> ('a * 'b, ('a, 'b) Either.t) t let rec quickcheck_generator : type input output cmp_in cmp_out. (input, cmp_in) Witness.t -> (output, cmp_out) Witness.t -> (input, output) t Q.Generator.t = fun in_witness out_witness -> let open Q.Generator.Let_syntax in let identity_weight = match Witness.is_same_witness in_witness out_witness with | true -> Witness.num_constructors | _ -> 0. in let int_weight = match in_witness, out_witness with | Int, Int -> Float.square Witness.num_constructors | _, _ -> 0. in let snd_weight = match in_witness with | Tuple (_, second_witness) -> (match Witness.is_same_witness second_witness out_witness with | true -> Float.square Witness.num_constructors | _ -> 0.) | _ -> 0. in let map_tuple_weight = match in_witness, out_witness with | Tuple _, Tuple _ -> Float.square Witness.num_constructors | _ -> 0. in let identity_weighted_gen = weighted identity_weight (fun () -> let handler (type input output cmp_in cmp_out) (in_witness : (input, cmp_in) Witness.t) (out_witness : (output, cmp_out) Witness.t) : (input, output) t Q.Generator.t = let T = Witness.same_witness_exn in_witness out_witness in Q.Generator.return Identity in handler in_witness out_witness) in let const_gen = let%map output = real_data_generator out_witness in Const output in let int_weighted_gen = weighted int_weight (fun () -> let T = Witness.same_witness_exn out_witness Int in let T = Witness.same_witness_exn in_witness Int in let%map add = real_data_generator in_witness in (Add_const add : (input, output) t)) in let snd_weighted_gen = weighted snd_weight (fun () -> let handler (type input output cmp_in cmp_out) (in_witness : (input, cmp_in) Witness.t) (out_witness : (output, cmp_out) Witness.t) : (input, output) t Q.Generator.t = match in_witness with | Tuple (_, second_witness) -> let T = Witness.same_witness_exn out_witness second_witness in Q.Generator.return Snd | _ -> assert false in handler in_witness out_witness) in let base_cases = List.concat [ identity_weighted_gen; [ 1., const_gen ]; int_weighted_gen; snd_weighted_gen ] in match%bind Q.Generator.size with | 0 -> Q.Generator.weighted_union base_cases | size -> let map_tuple_weighted_gen = weighted map_tuple_weight (fun () -> let handler (type input output cmp_in cmp_out) (in_witness : (input, cmp_in) Witness.t) (out_witness : (output, cmp_out) Witness.t) : (input, output) t Q.Generator.t = match in_witness, out_witness with | Tuple (in_first, in_second), Tuple (out_first, out_second) -> let%bind func1 = quickcheck_generator in_first out_first in let%map func2 = quickcheck_generator in_second out_second in Map_tuple (func1, func2) | _ -> assert false in handler in_witness out_witness) in Q.Generator.with_size ~size:(size - 1) (Q.Generator.weighted_union (List.concat [ base_cases; map_tuple_weighted_gen ])) ;; let rec quickcheck_observer : type output input cmp_in cmp_out. (input, cmp_in) Witness.t -> (output, cmp_out) Witness.t -> (input, output) t Q.Observer.t = fun in_witness out_witness -> Q.Observer.create (fun t ~size ~hash -> match (t : (input, output) t) with | Identity -> hash_fold_int hash 0 | Const output -> let hash = hash_fold_int hash 1 in Q.Observer.observe (real_data_observer out_witness) output ~size ~hash | Add_const add -> let hash = hash_fold_int hash 2 in Q.Observer.observe Int.quickcheck_observer add ~size ~hash | Snd -> hash_fold_int hash 3 | Map_tuple (func1, func2) -> let hash = hash_fold_int hash 4 in (match in_witness, out_witness with | Tuple (in_first, in_second), Tuple (out_first, out_second) -> let hash = Q.Observer.observe (quickcheck_observer in_first out_first) func1 ~size ~hash in Q.Observer.observe (quickcheck_observer in_second out_second) func2 ~size ~hash | _ -> assert false) | Make_either which -> let hash = hash_fold_int hash 5 in (match in_witness with | Tuple _ -> (match which with | `First -> hash_fold_int hash 0 | `Second -> hash_fold_int hash 1) | _ -> assert false)) ;; end module Value = struct module rec T : sig type 'a t = | Return : 'a -> 'a t | Map : 'a t * ('a, 'cmp) Witness.t * ('a, 'b) Function.t -> 'b t | Real_value : 'a Bonsai.Value.t -> 'a t | Var : 'a -> 'a t | Both : { first : 'a t ; first_witness : ('a, _) Witness.t ; second : 'b t ; second_witness : ('b, _) Witness.t } -> ('a * 'b) t type packed = | T : { unpacked : 'a t ; witness : ('a, 'cmp) Witness.t } -> packed type context = packed list type goal = unit include Quickcheckable with type 'a t := 'a t and type packed := packed and type context := context and type goal := goal val to_string : ('a, _) Witness.t -> 'a t -> string end = struct type 'a t = | Return : 'a -> 'a t | Map : 'a t * ('a, 'cmp) Witness.t * ('a, 'b) Function.t -> 'b t | Real_value : 'a Bonsai.Value.t -> 'a t | Var : 'a -> 'a t | Both : { first : 'a t ; first_witness : ('a, _) Witness.t ; second : 'b t ; second_witness : ('b, _) Witness.t } -> ('a * 'b) t type packed = | T : { unpacked : 'a t ; witness : ('a, 'cmp) Witness.t } -> packed type context = packed list type goal = unit (* I think having a to_string function is helpful for debugging, and I don't want to rewrite it every time, so I'm leaving it here. *) let rec to_string : type a cmp. (a, cmp) Witness.t -> a t -> string = fun witness t -> match t with | Return data -> [%string "Return %{(real_data_to_string witness data)}"] | Map (inner, inner_witness, _f) -> [%string "Map with inner: %{(to_string inner_witness inner)}"] | Real_value _value -> "Real_value" | Var data -> [%string "Var %{(real_data_to_string witness data)}"] | Both { first; first_witness; second; second_witness } -> [%string "Both (%{to_string first_witness first}, %{to_string second_witness second})"] ;; let rec quickcheck_generator : type w cmp. context -> goal -> (w, cmp) Witness.t -> w t Q.Generator.t = fun context _goal witness -> let open Q.Generator.Let_syntax in let tuple_weight = match witness with | Tuple _ -> Witness.num_constructors | _ -> 0. in let context_weight = match context with | [] -> 0. (* Higher weight based on the assumption that values previously defined are likely to be used *) | _ :: _ -> Float.square weight_scalar in let return_gen = let%map data = real_data_generator witness in Return data in let var_gen = let%map data = real_data_generator witness in Var data in let context_weighted_gen = weighted context_weight (fun () -> let rec search_context : type a cmp. (a, cmp) Witness.t -> a t Q.Generator.t = fun witness -> let matching_witnesses = List.filter_map context ~f:(fun (T inner) -> match Witness.same_witness inner.witness witness with | Some T -> Some (inner.unpacked : a t) | None -> None) in match matching_witnesses with | _ :: _ -> Q.Generator.of_list matching_witnesses | [] -> (match witness with | Tuple (first_witness, second_witness) -> let%bind first = search_context first_witness in let%map second = search_context second_witness in Both { first; first_witness; second; second_witness } | Either (first_witness, second_witness) -> let%bind first = search_context first_witness in let%bind second = search_context second_witness in let in_tuple = Both { first; second; first_witness; second_witness } in let in_witness = Witness.Tuple (first_witness, second_witness) in let%map f = Q.Generator.of_list [ Function.Make_either `First; Function.Make_either `Second ] in Map (in_tuple, in_witness, f) | _ -> let%bind (T inner) = Q.Generator.of_list context in let%map f = Function.quickcheck_generator inner.witness witness in Map (inner.unpacked, inner.witness, f)) in search_context witness) in let base_cases = List.concat [ [ 1. /. weight_scalar, return_gen; 1., var_gen ]; context_weighted_gen ] in match%bind Q.Generator.size with | 0 -> Q.Generator.weighted_union base_cases | size -> let map_gen = (* Though this case doesn't look recursive, Packed.quickcheck_generator is mutually recursive with this function *) let%bind (T inner) = Packed.quickcheck_generator context () in let%map f = Function.quickcheck_generator inner.witness witness in Map (inner.unpacked, inner.witness, f) in let tuple_weighted_gen = weighted tuple_weight (fun () -> match witness with | Tuple (first_witness, second_witness) -> let%bind first = quickcheck_generator context () first_witness in let%map second = quickcheck_generator context () second_witness in (Both { first; first_witness; second; second_witness } : w t) | _ -> assert false) in Q.Generator.with_size ~size:(size - 1) (Q.Generator.weighted_union (List.concat [ base_cases; [ 1., map_gen ]; tuple_weighted_gen ])) ;; let rec quickcheck_observer : type w cmp. (w, cmp) Witness.t -> w t Q.Observer.t = fun witness -> Q.Observer.create (fun t ~size ~hash -> match (t : w t) with | Return data | Var data -> let hash = hash_fold_int hash 0 in Q.Observer.observe (real_data_observer witness) data ~size ~hash | Map (inner, inner_witness, f) -> let hash = hash_fold_int hash 1 in let hash = Q.Observer.observe (quickcheck_observer inner_witness) inner ~size ~hash in Q.Observer.observe (Function.quickcheck_observer inner_witness witness) f ~size ~hash | Real_value _ -> hash_fold_int hash 2 | Both { first; first_witness; second; second_witness } -> let hash = hash_fold_int hash 3 in let hash = Q.Observer.observe (quickcheck_observer first_witness) first ~size ~hash in Q.Observer.observe (quickcheck_observer second_witness) second ~size ~hash) ;; let packed_quickcheck_shrinker = Q.Shrinker.fixed_point (fun packed_quickcheck_shrinker -> Q.Shrinker.create (fun (T { unpacked; witness }) -> match unpacked with | Return data -> Sequence.round_robin [ Sequence.map (Q.Shrinker.shrink (real_data_shrinker witness) data) ~f:(fun data -> T { unpacked = Return data; witness }) ] | Var data -> Sequence.round_robin [ Sequence.map (Q.Shrinker.shrink (real_data_shrinker witness) data) ~f:(fun data -> T { unpacked = Var data; witness }) ] | Map (inner, inner_witness, _f) -> Sequence.singleton (T { unpacked = inner; witness = inner_witness }) | Real_value _ -> Sequence.singleton (T { unpacked = Return (); witness = Unit }) | Both { first; first_witness; second; second_witness } -> let first_packed : packed = T { unpacked = first; witness = first_witness } in let second_packed : packed = T { unpacked = second; witness = second_witness } in Sequence.round_robin [ Q.Shrinker.shrink packed_quickcheck_shrinker first_packed ; Q.Shrinker.shrink packed_quickcheck_shrinker second_packed ])) ;; end and Packed : (Packed_quickcheckable with type packed := T.packed and type context := T.context and type goal := T.goal) = With_witness (T) include T end let remove_n_exn my_list n = (* n should be the zero-index of the element to remove *) let first_half, second_half = List.split_n my_list (n + 1) in let to_ret = List.last_exn first_half in let first_half = List.drop_last_exn first_half in to_ret, first_half @ second_half ;; module Computation = struct type 'a t = | Return : 'a Value.t -> 'a t | Subst : 'a t * ('a, 'cmp) Witness.t * ('a Value.t -> 'b t) -> 'b t | Subst2 : { tuple_computation : ('f, 's) Tuple2.t t ; first_witness : ('f, _) Witness.t ; second_witness : ('s, _) Witness.t ; f : 'f Value.t -> 's Value.t -> 'r t } -> 'r t | Switch : { either_value : ('f, 's) Either.t Value.t ; first_witness : ('f, _) Witness.t ; second_witness : ('s, _) Witness.t ; f_first : 'f Value.t -> 'r t ; f_second : 's Value.t -> 'r t } -> 'r t | Assoc : { map_value : ('k, 'v, 'cmp) Map.t Value.t ; key_witness : ('k, 'cmp) Witness.t ; value_witness : ('v, _) Witness.t ; result_witness : ('r, _) Witness.t ; f : 'k Value.t -> 'v Value.t -> 'r t } -> ('k, 'r, 'cmp) Map.t t | State : { default_model : 'a ; default_witness : ('a, _) Witness.t } -> ('a * ('a -> unit Bonsai.Effect.t)) t type packed = | T : { unpacked : 'a t ; witness : ('a, 'cmp) Witness.t } -> packed let map t witness ~f = Subst (t, witness, fun value -> Return (Map (value, witness, f))) let one_argument_function_generator arg_witness continue context goal_list = Q.Generator.create (fun ~size ~random unpacked -> let context = Value.T { unpacked; witness = arg_witness } :: context in let generator = continue context goal_list in Q.Generator.generate generator ~size ~random) ;; let rec quickcheck_generator : type a cmp. Value.context -> Witness.packed list -> (a, cmp) Witness.t -> a t Q.Generator.t = fun context goal_list witness -> let open Q.Generator.Let_syntax in (* Function for choosing a witness from the goal list *) let pick_from_goal_list goal_list = let index = let f _index (Witness.T witness) = Witness.is_state_witness witness in Option.map (List.findi goal_list ~f) ~f:Tuple2.get1 in let%bind random_index = Q.Generator.int_inclusive 0 (List.length goal_list - 1) in match index with | None -> Q.Generator.return random_index | Some index -> Q.Generator.weighted_union [ Float.square weight_scalar, Q.Generator.return index ; 1., Q.Generator.return random_index ] in (* Handlers for each type of computation *) let subst_handler inner_witness goal_list = let%bind inner_unpacked = quickcheck_generator context [] inner_witness in let%map f = one_argument_computation_generator inner_witness witness context goal_list in Subst (inner_unpacked, inner_witness, f) in let subst2_handler (type a b cmp_a cmp_b) (first_witness : (a, cmp_a) Witness.t) (second_witness : (b, cmp_b) Witness.t) goal_list = let inner_goal_list : Witness.packed list = match first_witness, second_witness with | _, Effect_func _ -> [] | _ -> [ T first_witness; T second_witness ] in let%bind tuple_computation = quickcheck_generator context inner_goal_list (Tuple (first_witness, second_witness)) in let%map f = two_argument_computation_generator first_witness second_witness witness context goal_list in Subst2 { tuple_computation; first_witness; second_witness; f } in let switch_handler first_witness second_witness goal_first goal_second = let inner_witness = Witness.Either (first_witness, second_witness) in let (inner_goal_list : Witness.packed list) = [ T first_witness; T second_witness ] in let%bind inner_unpacked = quickcheck_generator context inner_goal_list inner_witness in let%map f = one_argument_function_generator inner_witness (fun context _goal_list -> let%bind value = Value.quickcheck_generator context () inner_witness in let%bind f_first = one_argument_computation_generator first_witness witness context goal_first in let%map f_second = one_argument_computation_generator second_witness witness context goal_second in Switch { either_value = value; first_witness; second_witness; f_first; f_second }) context goal_list in Subst (inner_unpacked, inner_witness, f) in let assoc_handler key_witness value_witness result_witness goal_list = let%bind map = Value.quickcheck_generator context () (Witness.Map (key_witness, value_witness)) in let%map f = two_argument_computation_generator key_witness value_witness result_witness context goal_list in Assoc { map_value = map; key_witness; value_witness; result_witness; f } in (* Compute weights *) let state_weight = match Witness.is_state_witness witness with | true -> weight_scalar *. Witness.num_constructors | _ -> 0. in let assoc_weight = match witness with | Map (_, _) -> weight_scalar *. Witness.num_constructors | _ -> 0. in let goal_weight, goal2_weight = match goal_list with | [] -> 0., 0. | [ _x ] -> weight_scalar *. Witness.num_constructors, 0. | _ :: _ :: _ -> ( weight_scalar *. Witness.num_constructors , weight_scalar *. Witness.num_constructors ) in let value_gen = let%map value = Value.quickcheck_generator context () witness in Return value in let state_weighted_gen = (* Generate State Computation *) weighted state_weight (fun () -> let handler (type w cmp) (witness : (w, cmp) Witness.t) : w t Q.Generator.t = match witness with | Tuple (first_witness, second_witness) -> (match Witness.same_witness_exn second_witness (Effect_func first_witness) with | T -> let%map data = real_data_generator first_witness in State { default_model = data; default_witness = first_witness }) | _ -> assert false in handler witness) in (* Generate computation *) let base_cases = List.concat [ [ 1. /. weight_scalar, value_gen ]; state_weighted_gen ] in match%bind Q.Generator.size with | 0 -> Q.Generator.weighted_union base_cases | size -> let subst_gen = (* Generate Subst computations *) let witness_handler () : _ Witness.witness_handler = { f = (fun inner_witness -> subst_handler inner_witness goal_list) } in Witness.make_witness (witness_handler ()) in let goal_gen = let%bind index = pick_from_goal_list goal_list in let T inner_witness, goal_list = remove_n_exn goal_list index in subst_handler inner_witness goal_list in let subst2_gen = (* Generate Subst2 computations *) let witness_handler () : _ Witness.witness_handler = { f = (fun first_witness -> Witness.make_witness { f = (fun second_witness -> subst2_handler first_witness second_witness goal_list) }) } in Witness.make_witness (witness_handler ()) in let goal2_gen = let%bind index = pick_from_goal_list goal_list in let T goal_witness, goal_list = remove_n_exn goal_list index in let default () = let%bind index = pick_from_goal_list goal_list in let T second_witness, goal_list = remove_n_exn goal_list index in subst2_handler goal_witness second_witness goal_list in match Witness.is_state_witness goal_witness with | true -> (match goal_witness with | Tuple (first_witness, second_witness) -> subst2_handler first_witness second_witness goal_list | _ -> assert false) | false -> default () in let goal2_switch_gen = (* Generate Switch computations *) let%bind index = pick_from_goal_list goal_list in (* Two separate goal_lists here because only one side of the Either gets used *) let T first_witness, goal_first = remove_n_exn goal_list index in let%bind index = pick_from_goal_list goal_list in let T second_witness, goal_second = remove_n_exn goal_list index in switch_handler first_witness second_witness goal_first goal_second in let switch_gen = let witness_handler () : _ Witness.witness_handler = { f = (fun first_witness -> Witness.make_witness { f = (fun second_witness -> switch_handler first_witness second_witness goal_list goal_list) }) } in Witness.make_witness (witness_handler ()) in let assoc_weighted_gen = (* Generate Assoc computations *) weighted assoc_weight (fun () -> match witness with | Map (key_witness, result_witness) -> (Witness.make_witness { f = (fun value_witness -> assoc_handler key_witness value_witness result_witness goal_list) } : a t Q.Generator.t) | _ -> assert false) in let goal_assoc_weighted_gen = weighted (goal_weight *. assoc_weight) (fun () -> match witness with | Map (key_witness, result_witness) -> let%bind index = pick_from_goal_list goal_list in let T value_witness, goal_list = remove_n_exn goal_list index in (assoc_handler key_witness value_witness result_witness goal_list : a t Q.Generator.t) | _ -> assert false) in Q.Generator.with_size ~size:(size - 1) (Q.Generator.weighted_union (List.concat [ base_cases ; [ 1., subst_gen ; goal_weight, goal_gen ; 1., subst2_gen ; goal2_weight, goal2_gen ; goal2_weight, goal2_switch_gen ; 1., switch_gen ] ; assoc_weighted_gen ; goal_assoc_weighted_gen ])) and one_argument_computation_generator : type a a_cmp b b_cmp. (a, a_cmp) Witness.t -> (b, b_cmp) Witness.t -> Value.packed list -> Witness.packed list -> (a Value.t -> b t) Q.Generator.t = fun arg_witness result_witness -> one_argument_function_generator arg_witness (fun context goal_list -> quickcheck_generator context goal_list result_witness) and two_argument_computation_generator : type a a_cmp b b_cmp c c_cmp. (a, a_cmp) Witness.t -> (b, b_cmp) Witness.t -> (c, c_cmp) Witness.t -> Value.packed list -> Witness.packed list -> (a Value.t -> b Value.t -> c t) Q.Generator.t = fun arg1_witness arg2_witness result_witness -> one_argument_function_generator arg1_witness (one_argument_computation_generator arg2_witness result_witness) ;; let rec quickcheck_observer : type w cmp. (w, cmp) Witness.t -> w t Q.Observer.t = fun witness -> Q.Observer.create (fun t ~size ~hash -> match (t : w t) with | Return data -> let hash = hash_fold_int hash 0 in Q.Observer.observe (Value.quickcheck_observer witness) data ~size ~hash | Subst (inner, inner_witness, f) -> let hash = hash_fold_int hash 1 in let hash = Q.Observer.observe (quickcheck_observer inner_witness) inner ~size ~hash in let fn_observer = Q.Observer.fn (Value.quickcheck_generator [] () inner_witness) (quickcheck_observer witness) in Q.Observer.observe fn_observer f ~size ~hash | Subst2 { tuple_computation; first_witness; second_witness; f } -> let hash = hash_fold_int hash 2 in let tuple_witness = Witness.Tuple (first_witness, second_witness) in let hash = Q.Observer.observe (quickcheck_observer tuple_witness) tuple_computation ~size ~hash in let f_inner_observer = Q.Observer.fn (Value.quickcheck_generator [] () second_witness) (quickcheck_observer witness) in let f_observer = Q.Observer.fn (Value.quickcheck_generator [] () first_witness) f_inner_observer in Q.Observer.observe f_observer f ~size ~hash | Switch { either_value; first_witness; second_witness; f_first; f_second } -> let hash = hash_fold_int hash 3 in let inner_witness = Witness.Either (first_witness, second_witness) in let hash = Q.Observer.observe (Value.quickcheck_observer inner_witness) either_value ~size ~hash in let f_first_observer = Q.Observer.fn (Value.quickcheck_generator [] () first_witness) (quickcheck_observer witness) in let hash = Q.Observer.observe f_first_observer f_first ~size ~hash in let f_second_observer = Q.Observer.fn (Value.quickcheck_generator [] () second_witness) (quickcheck_observer witness) in Q.Observer.observe f_second_observer f_second ~size ~hash | Assoc { map_value; key_witness; value_witness; result_witness; f } -> let hash = hash_fold_int hash 4 in (* Observe value *) let map_witness = Witness.Map (key_witness, value_witness) in let hash = Q.Observer.observe (Value.quickcheck_observer map_witness) map_value ~size ~hash in (* Observe f *) let f_inner_observer = Q.Observer.fn (Value.quickcheck_generator [] () value_witness) (quickcheck_observer result_witness) in let f_observer = Q.Observer.fn (Value.quickcheck_generator [] () key_witness) f_inner_observer in Q.Observer.observe f_observer f ~size ~hash | State { default_model; default_witness } -> let hash = hash_fold_int hash 5 in (* Observe default_model *) Q.Observer.observe (real_data_observer default_witness) default_model ~size ~hash) ;; let packed_quickcheck_shrinker = Q.Shrinker.create (fun (T { unpacked; witness }) -> match unpacked with | Return data -> Sequence.round_robin [ Sequence.map (Q.Shrinker.shrink Value.packed_quickcheck_shrinker (Value.T { unpacked = data; witness })) ~f:(fun (T { unpacked; witness }) -> T { unpacked = Return unpacked; witness }) ] | Subst (inner, inner_witness, _f) -> Sequence.singleton (T { unpacked = inner; witness = inner_witness }) | Subst2 { tuple_computation; first_witness; second_witness; _ } -> let inner_witness = Witness.Tuple (first_witness, second_witness) in Sequence.singleton (T { unpacked = tuple_computation; witness = inner_witness }) | Switch { either_value; first_witness; second_witness; _ } -> let inner_witness = Witness.Either (first_witness, second_witness) in Sequence.singleton (T { unpacked = Return either_value; witness = inner_witness }) | Assoc { map_value; key_witness; value_witness; _ } -> let map_witness = Witness.Map (key_witness, value_witness) in Sequence.singleton (T { unpacked = Return map_value; witness = map_witness }) | State { default_model; default_witness } -> Sequence.singleton (T { unpacked = Return (Return default_model); witness = default_witness })) ;; end let rec to_real_function : type input output. (input, output) Function.t -> (input -> output) = function | Identity -> Fn.id | Const output -> Fn.const output | Add_const add -> ( + ) add | Snd -> snd | Map_tuple (func1, func2) -> fun (first, second) -> (to_real_function func1) first, (to_real_function func2) second | Make_either which -> (match which with | `First -> fun (first, _) -> First first | `Second -> fun (_, second) -> Second second) ;; let rec to_real_value : type w. w Value.t -> w Bonsai.Value.t = fun unpacked -> match unpacked with | Return data -> Bonsai.Value.return data | Var data -> Bonsai.Var.create data |> Bonsai.Var.value | Map (inner, _inner_witness, f) -> Bonsai.Value.map (to_real_value inner) ~f:(to_real_function f) | Real_value value -> value | Both { first; second; _ } -> Bonsai.Value.both (to_real_value first) (to_real_value second) ;; let of_real_value (type w) (value : w Bonsai.Value.t) : w Value.t = Real_value value let rec to_real_computation : type w. w Computation.t -> w Bonsai.Computation.t = fun unpacked -> let open Bonsai.Let_syntax in match unpacked with | Return unpacked -> Bonsai.read (to_real_value unpacked) | Subst (inner, _inner_witness, f) -> let%sub value = to_real_computation inner in to_real_computation (f (of_real_value value)) | Subst2 { tuple_computation; f; _ } -> let%sub first, second = to_real_computation tuple_computation in to_real_computation (f (of_real_value first) (of_real_value second)) | Switch { either_value; f_first; f_second; _ } -> let value = to_real_value either_value in (match%sub value with | First x -> to_real_computation (f_first (of_real_value x)) | Second x -> to_real_computation (f_second (of_real_value x))) | Assoc { map_value; key_witness; f; _ } -> let map = to_real_value map_value in Bonsai.assoc (module (val make_comparator_and_model key_witness)) map ~f:(fun key value -> to_real_computation (f (of_real_value key) (of_real_value value))) | State { default_model; default_witness } -> Bonsai.state ~default_model (module (val make_comparator_and_model default_witness)) ;; module Top_level_computation : sig val quickcheck_generator : Computation.packed Q.Generator.t val quickcheck_observer : Computation.packed Q.Observer.t val quickcheck_shrinker : Computation.packed Q.Shrinker.t end = struct let rec extract_funcs : type gen gen_cmp res res_cmp. (gen, gen_cmp) Witness.t -> (res, res_cmp) Witness.t -> (gen, res) Function.t = fun gen_witness res_witness -> match gen_witness with | Tuple (gen_first, gen_second) -> (match gen_second with | Effect_func _ -> let T = Witness.same_witness_exn gen_second res_witness in Snd | Tuple _ -> (match res_witness with | Tuple (res_first, res_second) -> (match gen_first with | Tuple _ -> let f = extract_funcs gen_first res_first in let g = extract_funcs gen_second res_second in Map_tuple (f, g) | _ -> assert false) | _ -> assert false) | _ -> assert false) | _ -> assert false ;; let top_level_extract_funcs (type f a b a_cmp b_cmp) (gen_witness : (f * a, a_cmp) Witness.t) (res_witness : (f * b, b_cmp) Witness.t) : (f * a, f * b) Function.t = match gen_witness, res_witness with | Tuple (_, gen_second), Tuple (_, res_second) -> Map_tuple (Identity, extract_funcs gen_second res_second) | _ -> raise_s [%message "gen is ill-formed!"] ;; let quickcheck_generator = let open Q.Generator.Let_syntax in let%bind original_size = Q.Generator.size in Q.Generator.with_size ~size:(original_size / size_scalar) (Witness.make_witness { f = (fun reg_witness -> Q.Generator.with_size ~size:(original_size / size_scalar) (Witness.make_effect_witness { f = (fun state_witness effect_witness -> let res_witness = Witness.Tuple (reg_witness, effect_witness) in let gen_witness = Witness.Tuple (reg_witness, state_witness) in let goal_list = Witness.to_goal_list gen_witness in let%map gen_computation = Q.Generator.with_size ~size:original_size (Computation.quickcheck_generator [] goal_list gen_witness) in let res_computation = Computation.map gen_computation gen_witness ~f:(top_level_extract_funcs gen_witness res_witness) in Computation.T { unpacked = res_computation; witness = res_witness }) })) }) ;; let quickcheck_observer = Q.Observer.create (fun (Computation.T { witness; unpacked }) ~size ~hash -> Q.Observer.observe (Computation.quickcheck_observer witness) unpacked ~size ~hash) ;; let quickcheck_shrinker = Computation.packed_quickcheck_shrinker end module Packed_real_computation = struct type t = | T : { unpacked : 'a Bonsai.Computation.t ; witness : ('a, 'cmp) Witness.t } -> t end let to_packed_real_computation (T { unpacked; witness } : Computation.packed) = Packed_real_computation.T { unpacked = to_real_computation unpacked; witness } ;; module type Result_spec = sig type t include Bonsai_test.Result_spec.S with type t := t end type 'w incoming = | First : 'a incoming -> ('a * 'b) incoming | Second : 'b incoming -> ('a * 'b) incoming | Effect_func : 'a -> ('a -> unit Bonsai.Effect.t) incoming let combine_actions_exn : type a b. (a incoming -> unit Bonsai.Effect.t) -> (b incoming -> unit Bonsai.Effect.t) -> ((a * b) incoming -> unit Bonsai.Effect.t) = fun effect1 effect2 either -> match either with | First first -> effect1 first | Second second -> effect2 second ;; let rec witness_to_result_spec : type w cmp. (w, cmp) Witness.t -> (module Result_spec with type t = w and type incoming = w incoming) = fun witness -> match witness with | Unit | Int | Either _ | Map _ -> (module struct type t = w type nonrec incoming = w incoming let view = real_data_to_string witness let incoming _ _ = raise_s [%message [%here] "BUG: This should be impossible"] end) | Tuple (first_witness, second_witness) -> let module First = (val witness_to_result_spec first_witness) in let module Second = (val witness_to_result_spec second_witness) in (module struct type t = (First.t, Second.t) Tuple2.t type nonrec incoming = (First.t * Second.t) incoming let view = real_data_to_string witness let incoming t = combine_actions_exn (First.incoming (Tuple2.get1 t)) (Second.incoming (Tuple2.get2 t)) ;; end) | Effect_func inner_witness -> let module Inner = (val witness_to_result_spec inner_witness) in (module struct type t = Inner.t -> unit Bonsai.Effect.t type nonrec incoming = w incoming let view = real_data_to_string witness let incoming (t : w) (incoming : incoming) = match incoming with | Effect_func inner -> t inner ;; end) ;; let rec actions_generator : type a cmp. (a, cmp) Witness.t -> a incoming Q.Generator.t option = fun witness -> let open Q.Generator.Let_syntax in match witness with | Tuple (first_witness, second_witness) -> (match actions_generator first_witness, actions_generator second_witness with | Some first_generator, Some second_generator -> Some (match%bind Q.Generator.bool with | true -> let%map first = first_generator in First first | false -> let%map second = second_generator in Second second) | Some first_generator, None -> Some (let%map first = first_generator in First first) | None, Some second_generator -> Some (let%map second = second_generator in Second second) | None, None -> None) | Effect_func inner_witness -> Some (let%map data = real_data_generator inner_witness in Effect_func data) | Unit | Int | Either _ | Map _ -> None ;;
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>