package bistro

  1. Overview
  2. Docs
A library to build and run distributed scientific workflows

Install

Dune Dependency

Authors

Maintainers

Sources

bistro-0.6.0.tbz
sha256=146177faaaa9117a8e2bf0fd60cb658662c0aa992f35beb246e6fd0766050e66
sha512=553fe0c20f236316449b077a47e6e12626d193ba1916e9da233e5526dd39090e8677277e1c79baace3bdc940cb009f25431730a8efc00ae4ed9cc42a0add9609

doc/bistro.script/Bistro_script/B/index.html

Module Bistro_script.BSource

Sourcemodule Located : sig ... end
include sig ... end
Sourceval pdir_int : string -> char option -> Astlib.Ast_412.Parsetree.directive_argument
Sourceval location : start:Lexing.position -> end_:Lexing.position -> ghost:bool -> Astlib.Location.t
Sourceval position : fname:string -> lnum:int -> bol:int -> cnum:int -> Lexing.position
Sourceval value_description : name:string Astlib.Location.loc -> type_:Astlib.Ast_412.Parsetree.core_type -> prim:string list -> Astlib.Ast_412.Parsetree.value_description
Sourceval enativeint : nativeint -> Astlib.Ast_412.Parsetree.expression
Sourceval pnativeint : nativeint -> Astlib.Ast_412.Parsetree.pattern

evar id produces a Pexp_ident _ expression, it parses its input so you can pass any dot-separated identifier, for instance: evar ~loc "Foo.bar".

pstr_value_list ~loc rf vbs = pstr_value ~loc rf vbs if vbs <> [], [] otherwise.

  • deprecated [since 2016-10] use Nonrecursive on the P(str|sig)_type instead
Sourceval unapplied_type_constr_conv : Ppxlib.Longident.t Ppxlib.Loc.t -> f:(string -> string) -> Astlib.Ast_412.Parsetree.expression

unapplied_type_constr_conv is the standard way to map identifiers to conversion fonctions, for preprocessor that creates values that follow the structure of types. More precisely, path_conv path (sprintf "sexp_of_%s") is:

  • sexp_of_t if path is "t"
  • A.B.sexp_of_foo if path is "A.B.foo"
  • A.B.sexp_of_f__foo (module A1) (module A2) if path is "A.B.F(A1)(A2).foo" type_constr_conv also applies it to a list of expression, which both prevents the compiler from allocating useless closures, and almost always what is needed, since type constructors are always applied.

Tries to simplify fun v1 v2 .. -> f v1 v2 .. into f. Only works when f is a path, not an arbitrary expression as that would change the meaning of the code. This can be used either for cleaning up the generated code, or to reduce allocation if f is a local variable (the compiler won't optimize the allocation of the closure).

Eta-reduction can change the types/behavior in some corner cases that are unlikely to show up in generated code:

  • if f has optional arguments, eta-expanding f can drop them
  • because labels commute, it can change the type of an expression: $ let f ~x y = x + y let f2 = fun x -> add x;; val f : x:int -> int -> int = <fun> val f2 : int -> x:int -> int = <fun> In fact, if f does side effects before receiving all its arguments, and if the eta-expansion is partially applied, eta-reducing could change behavior.

eta_reduce_if_possible_and_nonrec is meant for the case where the resulting expression is going to be bound in a potentially recursive let-binding, where we have to keep the eta-expansion when rec_flag is Recursive to avoid a compile error.

OCaml

Innovation. Community. Security.