package binsec
Semantic analysis of binary executables
Install
Dune Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.10.1.tbz
sha256=87d4048c9a90c8a14ee029e77d31032a15427f06416a31938cec8a68394234c4
sha512=6a023d2a5c87c56b0aac489874431d8dcccee1451a072a826190be3a7f75a961688bab95f193f494231744abc3bc9733ab5c809057d36a5e4d24c6c29c369144
doc/src/libterm/senv.ml.html
Source file senv.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2025 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) let solvers = let open Formula_options in [ Bitwuzla; Boolector; Z3; CVC4; Yices ] let map = let open Formula_options in let open Smt_options in function | Auto | Bitwuzla_builtin | Bitwuzla_legacy | Z3_builtin -> assert false | Bitwuzla_smtlib -> Bitwuzla | Boolector_smtlib -> Boolector | Z3_smtlib -> Z3 | CVC4_smtlib -> CVC4 | Yices_smtlib -> Yices let get_solver : ?solver:Smt.Smt_options.solver -> unit -> (module Solver.OPEN) = fun ?(solver = Smt_options.SMTSolver.get ()) () -> let module Logger = Smt_options.Logger in match solver with | (Auto | Bitwuzla_builtin) when Option.is_some Libsolver.bitwuzla_cxx -> Smt_options.Logger.debug "Use native Bitwuzla binding (cxx)."; let module Api = Api_solver.Make ((val Option.get Libsolver.bitwuzla_cxx)) in (module Api.Open) | (Auto | Bitwuzla_builtin | Bitwuzla_legacy) when Option.is_some Libsolver.bitwuzla_c -> Smt_options.Logger.debug "Use native Bitwuzla binding (c)."; let module Api = Api_solver.Make ((val Option.get Libsolver.bitwuzla_c)) in (module Api.Open) | (Auto | Z3_builtin) when Option.is_some Libsolver.z3 -> Smt_options.Logger.debug "Use native z3 binding."; let module Api = Api_solver.SafeArray ((val Option.get Libsolver.z3)) in (module Api.Open) | Auto -> ( try let solver = List.find Prover.ping solvers in Smt_options.Logger.info "Found %a in the path." Prover.pp solver; Formula_options.Solver.set solver; (module Smt2_solver.Solver) with Not_found -> Logger.fatal "No SMT solver found.") | Bitwuzla_builtin | Bitwuzla_legacy -> Smt_options.Logger.fatal "Native bitwuzla binding is required but not available." | Z3_builtin -> Smt_options.Logger.fatal "Native z3 binding is required but not available." | solver when Prover.ping (map solver) -> Smt_options.Logger.debug "Found %a in the path." Prover.pp (map solver); Formula_options.Solver.set (map solver); (module Smt2_solver.Solver) | solver -> Smt_options.Logger.fatal "%a is required but not available in path." Prover.pp (map solver) exception Undef = Types.Undef exception Uninterp = Types.Uninterp exception Unknown = Types.Unknown exception Non_unique = Types.Non_unique exception Non_mergeable = Types.Non_mergeable type 'a test = 'a Types.test = | True of 'a | False of 'a | Both of { t : 'a; f : 'a } (* utils *) module BiMap = Basic_types.BigInt.Map module NiTbl = Basic_types.Int.Htbl open Sexpr module BiItM = Imap module S = Basic_types.String.Map module I = Basic_types.Int.Map module R = Basic_types.Int.Htbl module K = Basic_types.Int.Set type _ Types.value += Term : Sexpr.Expr.t Types.value type lazy_memory = Solver.lazy_memory type 'a Types.feature += | VisibleSymbols : Expr.t Dba_types.Var.Map.t Types.feature | VisibleMemory : Memory.t Types.feature module State (D : Domains.S) (Solver : Solver.GET_MODEL_WITH_STATS) (QS : Types.QUERY_STATISTICS) = struct module Uid = struct type t = Suid.t let zero = Suid.incr Suid.zero (* zero is reserved for initial memory *) let succ = Suid.incr let compare = Suid.compare end module Solver = Solver (QS) let timeout = match Formula_options.Solver.Timeout.get () with | 0 -> None | n -> Some (float_of_int n) type t = { constraints : Expr.t list; (* reversed sequence of assertions *) clauses : int; mutable deps : BvSet.t BvMap.t; mutable domains : D.t BvMap.t; mutable anchors : K.t; vsymbols : Expr.t I.t; (* collection of visible symbols *) varrays : Memory.t S.t; (* collection of visible arrays *) vmemory : Memory.t; (* visible memory *) lmem : lazy_memory; (* set of lazily initialized memory locations *) model : Model.t; (* a model that satisfy constraints *) } module C : Ai.CONTEXT with type t = t and type v := D.t = struct type nonrec t = t let add_dependency t ~parent e = t.deps <- BvMap.add e (BvSet.add parent (try BvMap.find e t.deps with Not_found -> BvSet.empty)) t.deps let find_dependency t e = BvMap.find e t.deps let add t e v = t.domains <- BvMap.add e v t.domains let find t e = BvMap.find e t.domains end module Overapprox : Memory_manager.CONTEXT with type t = t and type v := D.t = struct include Ai.Make (D) (C) let anchor t (m : Memory.t) = match m with | Root | Symbol _ -> () | Layer { id; _ } -> t.anchors <- K.add id t.anchors let anchored t (m : Memory.t) = match m with | Root | Symbol _ -> true | Layer { id; _ } -> K.mem id t.anchors end module MMU = Memory_manager.Make (D) (Overapprox) let pp ppf state = Model.pp ppf state.model let empty () = let addr_space = Kernel_options.Machine.word_size () in { constraints = []; clauses = 0; deps = BvMap.empty; domains = BvMap.empty; anchors = K.empty; vsymbols = I.empty; varrays = S.empty; vmemory = Memory.root; lmem = { content = BiItM.empty; lemmas = []; addr_space }; model = Model.empty addr_space; } let alloc ~array state = let symbol = Memory.fresh array in { state with varrays = S.add array symbol state.varrays } let assign ({ id; _ } : Types.Var.t) value state = { state with vsymbols = I.add id value state.vsymbols } let write ~addr value dir state = let vmemory = MMU.write state ~addr value dir state.vmemory in { state with vmemory } let store name ~addr value dir state = try let ar = S.find name state.varrays in let varrays = S.add name (MMU.write state ~addr value dir ar) state.varrays in { state with varrays } with Not_found -> raise_notrace (Uninterp name) let lookup ({ id; _ } as var : Types.Var.t) t = try I.find id t.vsymbols with Not_found -> raise_notrace (Undef var) let read ~addr bytes dir state = let bytes = MMU.read state ~addr bytes dir state.vmemory in (bytes, state) let select name ~addr bytes dir state = try let array = S.find name state.varrays in let bytes = MMU.read state ~addr bytes dir array in (bytes, state) with Not_found -> raise_notrace (Uninterp name) let memcpy ~addr len orig state = let base = Bv.value_of addr in let lmem = { state.lmem with content = BiItM.add ~base len (Bv.value_of addr, orig) state.lmem.content; } in let vmemory = MMU.source state ~addr:(Expr.constant addr) ~len orig state.vmemory in { state with lmem; vmemory } let assume cond state = if Expr.is_equal cond Expr.one then ( QS.Preprocess.incr_true (); Some state) else if Expr.is_equal cond Expr.zero then ( QS.Preprocess.incr_false (); None) else match D.is_zero (Overapprox.eval state cond) with | True -> QS.Preprocess.incr_false (); None | False -> QS.Preprocess.incr_true (); Some state | Unknown -> let constraints = cond :: state.constraints and clauses = state.clauses + 1 in if Bitvector.zero = Model.eval state.model cond then ( QS.Solver.start_timer (); let r = Solver.check_sat ?timeout state.lmem constraints in QS.Solver.stop_timer (); match r with | Unknown -> raise Unknown | Unsat -> None | Sat model -> let state = { state with constraints; clauses; model } in Overapprox.refine state cond D.one; Some state) else ( QS.Preprocess.incr_true (); let state = { state with constraints; clauses } in Overapprox.refine state cond D.one; Some state) let test cond state = if Expr.is_equal cond Expr.one then ( QS.Preprocess.incr_true (); True state) else if Expr.is_equal cond Expr.zero then ( QS.Preprocess.incr_false (); False state) else match D.is_zero (Overapprox.eval state cond) with | True -> QS.Preprocess.incr_false (); False state | False -> QS.Preprocess.incr_true (); True state | Unknown -> ( let tcons = cond :: state.constraints and fcons = Expr.lognot cond :: state.constraints and clauses = state.clauses + 1 in let e = Model.eval state.model cond in let to_check, constraints = if Bv.is_zero e then (tcons, fcons) else (fcons, tcons) in QS.Solver.start_timer (); let r = Solver.check_sat ?timeout state.lmem to_check in QS.Solver.stop_timer (); match r with | Unknown -> raise Unknown | Unsat -> if Bv.is_zero e then ( let state = { state with constraints; clauses } in Overapprox.refine state cond D.zero; False state) else let state = { state with constraints; clauses } in Overapprox.refine state cond D.one; True state | Sat model -> let t, f = if Bv.is_zero e then ( { state with constraints = to_check; clauses; model }, { state with constraints; clauses } ) else ( { state with constraints; clauses }, { state with constraints = to_check; clauses; model } ) in Overapprox.refine t cond D.one; Overapprox.refine f cond D.zero; Both { t; f }) let enumerate = let with_solver state e n enum except = QS.Solver.start_timer (); match Solver.fold_values ?timeout state.lmem state.constraints e ~n ~except (fun bv model enum -> let cond = Expr.equal e (Expr.constant bv) in let state = { state with constraints = cond :: state.constraints; clauses = state.clauses + 1; model; } in ignore (Overapprox.eval state cond); Overapprox.refine state cond D.one; (bv, state) :: enum) enum with | exception Unknown -> QS.Solver.stop_timer (); raise Unknown | enum -> QS.Solver.stop_timer (); enum in fun e ?(n = 1) ?(except = []) state -> match e with | Expr.Cst bv when List.mem bv except = false -> QS.Preprocess.incr_const (); [ (bv, state) ] | Expr.Cst _ -> QS.Preprocess.incr_const (); [] | _ -> ( let bv = Model.eval state.model e in let n, enum, except = if List.mem bv except then (n, [], except) else ( QS.Preprocess.incr_const (); let cond = Expr.equal e (Expr.constant bv) in let state = { state with constraints = cond :: state.constraints; clauses = state.clauses + 1; } in ignore (Overapprox.eval state cond); Overapprox.refine state cond D.one; (n - 1, [ (bv, state) ], bv :: except)) in if n = 0 then enum else let size = Expr.sizeof e and d = Overapprox.eval state e in match D.project ~size d with | Point _ -> enum | Top | Seq _ -> with_solver state e n enum except) let rec zip c0 n0 c1 n1 c0' c1' = if n0 < n1 then zip c0 n0 (List.tl c1) (n1 - 1) c0' (Expr.logand c1' (List.hd c1)) else if n1 < n0 then zip (List.tl c0) (n0 - 1) c1 n1 (Expr.logand c0' (List.hd c0)) c1' else if c0 == c1 then (c0', c1', c0, n0) else zip (List.tl c0) (n0 - 1) (List.tl c1) (n1 - 1) (Expr.logand c0' (List.hd c0)) (Expr.logand c1' (List.hd c1)) let zip c0 n0 c1 n1 = let c0', c1', common, n = zip c0 n0 c1 n1 Expr.one Expr.one in (c0', c1', common, n) let merge ~parent:_ t t' = if t == t' then t else if t.lmem == t'.lmem then ( let c, c', common, n = zip t.constraints t.clauses t'.constraints t'.clauses in let cu = Expr.logor c c' in let constraints = cu :: common and clauses = n + 1 and domains = BvMap.merge (fun e o0 o1 -> match (o0, o1) with | None, None -> assert false | Some d0, Some d1 -> Some (D.union ~size:(Expr.sizeof e) d0 d1) | (Some _ | None), (Some _ | None) -> Some (D.top (Expr.sizeof e))) t.domains t'.domains and anchors = K.union t.anchors t'.anchors and deps = BvMap.merge (fun _ o o' -> match (o, o') with | None, None -> assert false | None, Some _ -> o' | Some _, None -> o | Some d, Some d' -> Some (BvSet.union d d')) t.deps t'.deps and vsymbols = if t.vsymbols == t'.vsymbols then t.vsymbols else I.merge (fun _ o0 o1 -> match (o0, o1) with | None, None -> assert false | Some e0, Some e1 -> if Expr.is_equal e0 e1 then o0 else Some (Expr.ite c' e1 e0) | Some _, None -> o0 | None, Some _ -> o1) t.vsymbols t'.vsymbols and lmem = t.lmem and model = t.model in let t'' = { t with constraints; clauses; deps; domains; anchors; vsymbols; lmem; model; } in ignore (Overapprox.eval t'' cu); let varrays = if t.varrays == t'.varrays then t.varrays else S.merge (fun _ o0 o1 -> match (o0, o1) with | Some a0, Some a1 -> Some (MMU.merge t'' c' a1 a0) | (Some _ | None), (Some _ | None) -> raise_notrace Non_mergeable) t.varrays t'.varrays and vmemory = MMU.merge t'' c' t'.vmemory t.vmemory in Overapprox.refine t'' cu D.one; { t'' with varrays; vmemory }) else raise_notrace Non_mergeable module Value = struct type t = Expr.t let kind = Term let constant = Expr.constant let var id name size = Expr.var (name ^ Suid.to_string id) size name let unary = Expr.unary let binary = Expr.binary let ite = Expr.ite let is_symbolic : t -> bool = function Cst _ -> true | _ -> false let is_zero : t -> Types.trilean = function | Cst bv -> if Bv.is_zeros bv then True else False | _ -> Unknown end let assertions t = t.constraints let get_value (e : Expr.t) _ = match e with Cst bv -> bv | _ -> raise_notrace Non_unique let get_a_value (e : Expr.t) t = Model.eval t.model e let pp_smt (target : Expr.t Types.target) ppf t = let module P = Smt2_solver.Printer in let ctx = P.create ~next_id:Uid.zero () in (* visit assertions *) List.iter (P.visit_bl ctx) t.constraints; (* visit terms *) let defs = match target with | Some defs -> List.iter (fun (e, _) -> P.visit_bv ctx e) defs; defs | None -> P.visit_ax ctx t.vmemory; List.rev (I.fold (fun id expr defs -> match Dba.Var.from_id id with | exception Not_found -> defs | { name; _ } -> P.visit_bv ctx expr; (expr, name) :: defs) t.vsymbols []) in Format.pp_open_vbox ppf 0; (* print definitions *) P.pp_print_defs ppf ctx; List.iter (fun (bv, name) -> Format.fprintf ppf "@[<h>(define-fun %s () (_ BitVec %d)@ " name (Expr.sizeof bv); P.pp_print_bv ctx ppf bv; Format.fprintf ppf ")@]@ ") defs; if target = None then Format.fprintf ppf "@[<h>(define-fun memory () (Array (_ BitVec %d) (_ BitVec 8))@ %a)@]" (Kernel_options.Machine.word_size ()) (P.pp_print_ax ctx) t.vmemory; (* print assertions *) List.iter (fun bl -> Format.pp_open_hbox ppf (); Format.pp_print_string ppf "(assert "; P.pp_print_bl ctx ppf bl; Format.pp_print_char ppf ')'; Format.pp_close_box ppf (); Format.pp_print_space ppf ()) t.constraints; Format.pp_close_box ppf () let to_formula t = let module C = Smt2_solver.Cross in let ctx = C.create ~next_id:Uid.zero () in List.iter (C.assert_bl ctx) t.constraints; C.define_ax ctx "memory" t.vmemory; I.iter (fun id expr -> match Dba.Var.from_id id with | exception Not_found -> () | { name; _ } -> C.define_bv ctx name expr) t.vsymbols; C.to_formula ctx let getter : type a. a Types.feature -> (t -> a) option = function | VisibleSymbols -> Some (fun state -> I.fold (fun id expr map -> match Dba.Var.from_id id with | exception Not_found -> map | var -> Dba_types.Var.Map.add var expr map) state.vsymbols Dba_types.Var.Map.empty) | VisibleMemory -> Some (fun state -> state.vmemory) | _ -> None let setter _ = None end type Options.Engine.t += Vanilla | Multi_checks let () = Options.Engine.register "vanilla" Vanilla (fun () -> let module Solver = Solver.Once ((val get_solver ())) in (module State (Domains.Interval) (Solver))) let () = Options.Engine.register "multi-checks" Multi_checks (fun () -> let module Solver = Solver.MultiChecks ((val get_solver ())) in (module State (Domains.Interval) (Solver)))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>