package binsec
Semantic analysis of binary executables
Install
Dune Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.10.1.tbz
sha256=87d4048c9a90c8a14ee029e77d31032a15427f06416a31938cec8a68394234c4
sha512=6a023d2a5c87c56b0aac489874431d8dcccee1451a072a826190be3a7f75a961688bab95f193f494231744abc3bc9733ab5c809057d36a5e4d24c6c29c369144
doc/src/binsec.smt/smt_internal.ml.html
Source file smt_internal.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2025 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) module type Session = sig val put_entry : Formula.entry -> unit val bv_lookup : Formula.bv_term -> Bitvector.t val ax_lookup : Formula.ax_term -> (Bitvector.t * Bitvector.t) array val check_sat : timeout:int -> Formula.status val close : unit -> unit end module Session (Solver : Libsolver.S) : Session = struct module Bl = Solver.Bl module Bv = Solver.Bv module Ax = Solver.Ax module BlH = Formula.BlTermHashtbl module BvH = Formula.BvTermHashtbl module AxH = Formula.AxTermHashtbl module I = Basic_types.Int.Htbl module P = Hashtbl.Make (struct type t = int * int let equal = ( = ) let hash = Hashtbl.hash end) let bl_mapping = BlH.create 64 let bv_mapping = BvH.create 64 let ax_mapping = AxH.create 64 let ax_sort = P.create 8 let ax_sort idx elt = let p = (idx, elt) in try P.find ax_sort p with Not_found -> let sort = Ax.sort ~idx elt in P.add ax_sort p sort; sort let bl_bnop_map : Formula.bl_bnop -> Bl.t -> Bl.t -> Bl.t = function | BlImply -> Bl.implies | BlAnd -> Bl.logand | BlOr -> Bl.logor | BlXor -> Bl.logxor let bl_comp_map : Formula.bl_comp -> Bl.t -> Bl.t -> Bl.t = function | BlEqual -> Bl.equal | BlDistinct -> Bl.diff let rec repeat n bv_term acc = if n = 0 then acc else repeat (n - 1) bv_term (Bv.append bv_term acc) let bv_unop_map : Formula.bv_unop -> Bv.t -> Bv.t = function | BvNot -> Bv.lognot | BvNeg -> Bv.neg | BvRepeat n -> fun bv_term -> repeat (n - 1) bv_term bv_term | BvZeroExtend n -> Bv.uext n | BvSignExtend n -> Bv.sext n | BvRotateLeft n -> (Fun.flip Bv.rotate_lefti) n | BvRotateRight n -> (Fun.flip Bv.rotate_righti) n | BvExtract { hi; lo } -> Bv.extract ~hi ~lo let bv_bnop_map : Formula.bv_bnop -> Bv.t -> Bv.t -> Bv.t = function | BvConcat -> Bv.append | BvAnd -> Bv.logand | BvNand -> Bv.lognand | BvOr -> Bv.logor | BvNor -> Bv.lognor | BvXor -> Bv.logxor | BvXnor -> Bv.logxnor | BvCmp -> fun x y -> Bl.to_bv (Bv.equal x y) | BvAdd -> Bv.add | BvSub -> Bv.sub | BvMul -> Bv.mul | BvUdiv -> Bv.udiv | BvSdiv -> Bv.sdiv | BvUrem -> Bv.urem | BvSrem -> Bv.srem | BvSmod -> Bv.smod | BvShl -> Bv.shift_left | BvAshr -> Bv.shift_right_signed | BvLshr -> Bv.shift_right let bv_comp_map : Formula.bv_comp -> Bv.t -> Bv.t -> Bl.t = function | BvEqual -> Bv.equal | BvDistinct -> Bv.diff | BvUlt -> Bv.ult | BvUle -> Bv.ule | BvUgt -> Bv.ugt | BvUge -> Bv.uge | BvSlt -> Bv.slt | BvSle -> Bv.sle | BvSgt -> Bv.sgt | BvSge -> Bv.sge let ax_comp_map : Formula.ax_comp -> Ax.t -> Ax.t -> Bl.t = function | AxEqual -> Ax.equal | AxDistinct -> Ax.diff let rec mk_select sz ax_term bv_term acc = if sz = 0 then acc else mk_select (sz - 1) ax_term (Bv.succ bv_term) (Bv.append (Ax.select ax_term bv_term) acc) let mk_select sz ax_term bv_term = mk_select (sz - 1) ax_term (Bv.succ bv_term) (Ax.select ax_term bv_term) let rec mk_store bindings elt_size sz ax_term bv_term0 bv_term1 = if elt_size = sz then Ax.store ax_term bv_term0 (bv_map bindings bv_term1) else mk_store bindings elt_size (sz - elt_size) (Ax.store ax_term bv_term0 (bv_map bindings (Formula.mk_bv_extract { Interval.hi = elt_size - 1; lo = 0 } bv_term1))) (Bv.succ bv_term0) (Formula.mk_bv_extract { Interval.hi = sz - 1; lo = elt_size } bv_term1) and bind defs bindings = let bl_mapping = BlH.create 8 and bv_mapping = BvH.create 8 and ax_mapping = AxH.create 8 in List.iter (put_define [ (bl_mapping, bv_mapping, ax_mapping) ]) defs; (bl_mapping, bv_mapping, ax_mapping) :: bindings and bl_lookup bl_term = function | [] -> BlH.find bl_mapping bl_term | (bl_mapping, _, _) :: bindings -> ( try BlH.find bl_mapping bl_term with Not_found -> bl_lookup bl_term bindings) and bv_lookup bv_term = function | [] -> BvH.find bv_mapping bv_term | (_, bv_mapping, _) :: bindings -> ( try BvH.find bv_mapping bv_term with Not_found -> bv_lookup bv_term bindings) and ax_lookup ax_term = function | [] -> AxH.find ax_mapping ax_term | (_, _, ax_mapping) :: bindings -> ( try AxH.find ax_mapping ax_term with Not_found -> ax_lookup ax_term bindings) and bl_map bindings (bl_term : Formula.bl_term) = try bl_lookup bl_term bindings with Not_found -> let bl_term' = match bl_term.bl_term_desc with | BlTrue -> Bl.top | BlFalse -> Bl.bot | BlFun _ -> assert false | BlLet (defs, bl_term) -> bl_map (bind defs bindings) bl_term | BlUnop (BlNot, bl_term) -> Bl.lognot (bl_map bindings bl_term) | BlBnop (op, bl_term0, bl_term1) -> (bl_bnop_map op) (bl_map bindings bl_term0) (bl_map bindings bl_term1) | BlComp (op, bl_term0, bl_term1) -> (bl_comp_map op) (bl_map bindings bl_term0) (bl_map bindings bl_term1) | BvComp (op, bv_term0, bv_term1) -> (bv_comp_map op) (bv_map bindings bv_term0) (bv_map bindings bv_term1) | AxComp (op, ax_term0, ax_term1) -> (ax_comp_map op) (ax_map bindings ax_term0) (ax_map bindings ax_term1) | BlIte (bl_term0, bl_term1, bl_term2) -> Bl.ite (bl_map bindings bl_term0) (bl_map bindings bl_term1) (bl_map bindings bl_term2) in BlH.add bl_mapping bl_term bl_term'; bl_term' and bv_map bindings (bv_term : Formula.bv_term) = try bv_lookup bv_term bindings with Not_found -> let bv_term' = match bv_term.bv_term_desc with | BvCst bv -> Bv.value (Bitvector.size_of bv) (Bitvector.value_of bv) | BvFun ({ bv_name; bv_size; _ }, []) -> Bv.const bv_size bv_name | BvFun _ -> assert false | BvLet (defs, bv_term) -> bv_map (bind defs bindings) bv_term | BvUnop (op, bv_term) -> (bv_unop_map op) (bv_map bindings bv_term) | BvBnop (op, bv_term0, bv_term1) -> (bv_bnop_map op) (bv_map bindings bv_term0) (bv_map bindings bv_term1) | BvIte (bl_term, bv_term0, bv_term1) -> Bv.ite (bl_map bindings bl_term) (bv_map bindings bv_term0) (bv_map bindings bv_term1) | Select (1, ax_term, bv_term) -> Ax.select (ax_map bindings ax_term) (bv_map bindings bv_term) | Select (sz, ax_term, bv_term) -> mk_select sz (ax_map bindings ax_term) (bv_map bindings bv_term) in BvH.add bv_mapping bv_term bv_term'; bv_term' and ax_map bindings (ax_term : Formula.ax_term) = try ax_lookup ax_term bindings with Not_found -> let ax_term' = match ax_term.ax_term_desc with | AxFun _ -> assert false | AxLet (defs, ax_term) -> ax_map (bind defs bindings) ax_term | AxIte (bl_term, ax_term0, ax_term1) -> Ax.ite (bl_map bindings bl_term) (ax_map bindings ax_term0) (ax_map bindings ax_term1) | Store (1, ax_term, bv_term0, bv_term1) -> Ax.store (ax_map bindings ax_term) (bv_map bindings bv_term0) (bv_map bindings bv_term1) | Store (sz, ax_term, bv_term0, bv_term1) -> mk_store bindings ax_term.elt_term_size (sz * ax_term.elt_term_size) (ax_map bindings ax_term) (bv_map bindings bv_term0) bv_term1 in AxH.add ax_mapping ax_term ax_term'; ax_term' and[@warning "-8"] put_define ((bl_mapping, bv_mapping, ax_mapping) :: _ as bindings) (def : Formula.def) = match def.def_desc with | BlDef (bl_var, _, bl_term) -> BlH.add bl_mapping (Formula.mk_bl_var bl_var) (bl_map bindings bl_term) | BvDef (bv_var, _, bv_term) -> BvH.add bv_mapping (Formula.mk_bv_var bv_var) (bv_map bindings bv_term) | AxDef (ax_var, _, ax_term) -> AxH.add ax_mapping (Formula.mk_ax_var ax_var) (ax_map bindings ax_term) let put_declare : Formula.decl -> unit = function | { decl_desc = BlDecl (({ bl_name; _ } as bl_var), _); _ } -> BlH.add bl_mapping (Formula.mk_bl_var bl_var) (Bl.const bl_name) | { decl_desc = BvDecl (({ bv_name; bv_size; _ } as bv_var), _); _ } -> BvH.add bv_mapping (Formula.mk_bv_var bv_var) (Bv.const bv_size bv_name) | { decl_desc = AxDecl (({ ax_name; idx_size; elt_size; _ } as ax_var), _); _; } -> AxH.add ax_mapping (Formula.mk_ax_var ax_var) (Ax.const (ax_sort idx_size elt_size) ax_name) let put_define = put_define [ (bl_mapping, bv_mapping, ax_mapping) ] let put_entry (entry : Formula.entry) = match entry.entry_desc with | Declare decl -> put_declare decl | Define def -> put_define def | Assert bl_term | Assume bl_term -> Solver.assert_formula (bl_map [] bl_term) | Comment _ -> () | Custom _ -> raise Formula.Invalid_custom let bv_lookup e = Bitvector.create (Solver.get_bv_value (bv_map [] e)) e.bv_term_size let ax_lookup e = let addr_size, elem_size = Formula_utils.ax_size e in Array.of_list (Solver.fold_ax_values (fun addr value values -> (Bitvector.create addr addr_size, Bitvector.create value elem_size) :: values) (ax_map [] e) []) let check_sat ~timeout = let timeout = if timeout = 0 then None else Some (float_of_int timeout) in match Solver.check_sat ?timeout () with | Sat -> Formula.SAT | Unsat -> Formula.UNSAT | Unknown -> Formula.UNKNOWN let check_sat ~timeout = match Utils.time (fun () -> check_sat ~timeout) with | time, r -> Smt_options.Logger.debug "solver returned %a in %fs" Formula_pp.pp_status r time; r let close = Solver.close end module Make (Factory : Libsolver.F) = struct type t = (module Session) * float let queries = ref 0 type time = { mutable sec : float } let cumulated_time = { sec = 0. } let query_stat () = !queries let time_stat () = cumulated_time.sec let open_session () = let t = Unix.gettimeofday () in ((module Session (Factory ()) : Session), t) let check_sat (solver, _) = incr queries; let timeout = Formula_options.Solver.Timeout.get () in let module S = (val solver : Session) in S.check_sat ~timeout let get_bv_value (solver, _) e = let module S = (val solver : Session) in S.bv_lookup e let get_ax_values (solver, _) e = let module S = (val solver : Session) in S.ax_lookup e let put (solver, _) e = let module S = (val solver : Session) in S.put_entry e let close_session (solver, t) = let module S = (val solver : Session) in S.close (); cumulated_time.sec <- cumulated_time.sec +. Unix.gettimeofday () -. t; Smt_options.Logger.debug "solver session closed in %fs" (Unix.gettimeofday () -. t) let check_sat_and_close solver = let res = check_sat solver in close_session solver; res end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>