package binsec
Semantic analysis of binary executables
Install
Dune Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.9.0.tbz
sha256=d959c2351b6cac10ffbdaf112769a676c9ad84bf6bc7fefa5cb1daa8d086cc97
sha512=1a3951896f05fb3a4cb05e81830373c75409a69c49323dc82e97c94889927b5f9561e704565a22c2a608842f67063d6c89a330477165b197a40d6ac231c09a7e
doc/src/libterm/solver.ml.html
Source file solver.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2024 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Sexpr exception Unknown = Types.Unknown module type S = sig val visit_formula : Expr.t list -> unit val iter_free_variables : (string -> Expr.t -> unit) -> unit val iter_free_arrays : (string -> Memory.t -> unit) -> unit val assert_formula : Expr.t -> unit val check_sat : ?timeout:float -> unit -> Libsolver.status val check_sat_assuming : ?timeout:float -> Expr.t -> Libsolver.status val get_value : Expr.t -> Z.t val fold_array_values : (Z.t -> Z.t -> 'a -> 'a) -> Memory.t -> 'a -> 'a val push : unit -> unit val pop : unit -> unit val close : unit -> unit end module type OPEN = functor () -> S type lazy_memory = { addr_space : int; content : (Z.t * Loader_buf.t) Imap.t; mutable lemmas : Expr.t list; } type result = Sat of Model.t | Unsat | Unknown let deadline_of_timeout = Option.map (fun timeout -> Unix.gettimeofday () +. timeout) let timeout_of_deadline = Option.map (fun deadline -> deadline -. Unix.gettimeofday ()) let extract_memory solver lmem = let module Solver = (val solver : S) in let memory = BiTbl.create 64 in let alocs = Solver.fold_array_values (fun addr value alocs -> match Imap.find addr lmem.content with | exception Not_found -> BiTbl.add memory addr (Char.unsafe_chr (Z.to_int value)); alocs | base, img -> let offset = Z.to_int (Z.sub addr base) in let value' = Z.of_int (if offset < Bigarray.Array1.dim img then Bigarray.Array1.get img offset else 0) in if value <> value' then Expr.equal (Expr.load 1 LittleEndian (Expr.constant (Bv.create addr lmem.addr_space)) Memory.root) (Expr.constant (Bv.create value' 8)) :: alocs else alocs) Memory.root lmem.lemmas in (memory, alocs) let extract_array solver name = let module Solver = (val solver : S) in let array = BiTbl.create 64 in Solver.fold_array_values (fun addr value array -> BiTbl.add array addr (Char.unsafe_chr (Z.to_int value)); array) name array let extract_arrays solver = let module Solver = (val solver : S) in let arrays = StTbl.create 5 in Solver.iter_free_arrays (fun name symbol -> StTbl.add arrays name (extract_array solver symbol)); arrays let extract_vars solver = let module Solver = (val solver : S) in let vars = StTbl.create 8 and values = BvTbl.create 32 in Solver.iter_free_variables (fun name bv -> StTbl.add vars name bv; BvTbl.add values bv (Bitvector.create (Solver.get_value bv) (Expr.sizeof bv))); (vars, values) let rec assert_lazy_lemmas solver lmem lemmas = let module Solver = (val solver : S) in if lemmas != lmem.lemmas then match lemmas with | [] -> () | e :: lemmas -> Solver.assert_formula e; assert_lazy_lemmas solver lmem lemmas let assert_lazy_lemmas solver lmem lemmas = assert_lazy_lemmas solver lmem lemmas; lmem.lemmas <- lemmas module Common (QS : Types.QUERY_STATISTICS) = struct let rec check_sat solver deadline lmem = let module Solver = (val solver : S) in match Solver.check_sat ?timeout:(timeout_of_deadline deadline) () with | Unknown -> QS.Solver.incr_err (); Unknown | Unsat -> QS.Solver.incr_unsat (); Unsat | Sat -> QS.Solver.incr_sat (); let memory, lemmas = extract_memory solver lmem in if lemmas != lmem.lemmas then ( assert_lazy_lemmas solver lmem lemmas; check_sat solver deadline lmem) else let vars, values = extract_vars solver in Sat (vars, values, memory, extract_arrays solver, lmem.addr_space) let rec check_sat_assuming solver deadline lmem e = let module Solver = (val solver : S) in match Solver.check_sat_assuming ?timeout:(timeout_of_deadline deadline) e with | Unknown -> QS.Solver.incr_err (); Unknown | Unsat -> QS.Solver.incr_unsat (); Unsat | Sat -> QS.Solver.incr_sat (); let memory, lemmas = extract_memory solver lmem in if lemmas != lmem.lemmas then ( assert_lazy_lemmas solver lmem lemmas; check_sat_assuming solver deadline lmem e) else let vars, values = extract_vars solver in Sat (vars, values, memory, extract_arrays solver, lmem.addr_space) let rec fold_values solver deadline lmem e size n f acc = if n = 0 then acc else let module Solver = (val solver : S) in match Solver.check_sat ?timeout:(timeout_of_deadline deadline) () with | Unknown -> QS.Solver.incr_err (); raise Unknown | Unsat -> QS.Solver.incr_unsat (); acc | Sat -> QS.Solver.incr_sat (); let memory, lemmas = extract_memory solver lmem in if lemmas != lmem.lemmas then ( assert_lazy_lemmas solver lmem lemmas; fold_values solver deadline lmem e size n f acc) else let x = Solver.get_value e in let bv = Bv.create x size in let vars, values = extract_vars solver in let model = (vars, values, memory, extract_arrays solver, lmem.addr_space) in Solver.assert_formula (Expr.diff e (Expr.constant bv)); fold_values solver deadline lmem e size (n - 1) f (f bv model acc) end module type GET_MODEL = sig val check_sat : ?timeout:float -> lazy_memory -> Expr.t list -> result val fold_values : ?timeout:float -> lazy_memory -> Expr.t list -> Expr.t -> n:int -> except:Bv.t list -> (Bv.t -> Model.t -> 'a -> 'a) -> 'a -> 'a end module type GET_MODEL_WITH_STATS = functor (QS : Types.QUERY_STATISTICS) -> GET_MODEL module Once (Session : OPEN) (QS : Types.QUERY_STATISTICS) : GET_MODEL = struct include Common (QS) let check_sat ?timeout lmem formula = let module Solver = Session () in Solver.visit_formula formula; List.iter Solver.assert_formula formula; List.iter Solver.assert_formula lmem.lemmas; let r = check_sat (module Solver : S) (deadline_of_timeout timeout) lmem in Solver.close (); r let fold_values ?timeout lmem formula e ~n ~except f acc = let module Solver = Session () in Solver.visit_formula formula; List.iter Solver.assert_formula formula; List.iter Solver.assert_formula lmem.lemmas; List.iter (fun bv -> Solver.assert_formula (Expr.diff e (Expr.constant bv))) except; match fold_values (module Solver : S) (deadline_of_timeout timeout) lmem e (Expr.sizeof e) n f acc with | exception Unknown -> Solver.close (); raise Unknown | acc -> Solver.close (); acc end module MultiChecks (Session : OPEN) (QS : Types.QUERY_STATISTICS) : GET_MODEL = struct include Common (QS) let close solver = let module Solver = (val solver : S) in Solver.close () type cache = { mutable assertions : Expr.t list; mutable lemmas : Expr.t list; mutable solver : (module S) option; } let cache = { assertions = []; lemmas = []; solver = None } let reset () = cache.assertions <- []; cache.lemmas <- []; Option.iter close cache.solver; cache.solver <- None let assert_formula solver formula = let module Solver = (val solver : S) in Solver.visit_formula formula; List.iter Solver.assert_formula formula let open_solver lemmas formula = Option.iter close cache.solver; let module Solver = Session () in let solver = (module Solver : S) in cache.solver <- Some solver; assert_formula solver formula; List.iter Solver.assert_formula lemmas; solver let rec update_lemmas solver lemmas = if lemmas = cache.lemmas then () else match lemmas with | [] -> assert false | e :: lemmas -> let module Solver = (val solver : S) in Solver.assert_formula e; update_lemmas solver lemmas let rec search_prefix solver lemmas formula to_assert = if formula == cache.assertions then ( assert_formula solver to_assert; update_lemmas solver lemmas; solver) else match formula with | [] -> open_solver lemmas to_assert | e :: formula -> search_prefix solver lemmas formula (e :: to_assert) let set_context lemmas formula = let solver = match cache.solver with | None -> open_solver lemmas formula | Some solver -> search_prefix solver lemmas formula [] in cache.assertions <- formula; cache.lemmas <- lemmas; solver let check_sat ?timeout (lmem : lazy_memory) formula = match formula with | [] -> Sat (Model.empty lmem.addr_space) | e :: formula -> let solver = set_context lmem.lemmas formula in let module Solver = (val solver) in check_sat_assuming (module Solver : S) (deadline_of_timeout timeout) lmem e let fold_values ?timeout (lmem : lazy_memory) formula e ~n ~except f acc = let solver = set_context lmem.lemmas formula in let module Solver = (val solver) in Solver.push (); List.iter (fun bv -> Solver.assert_formula (Expr.diff e (Expr.constant bv))) except; match fold_values (module Solver : S) (deadline_of_timeout timeout) lmem e (Expr.sizeof e) n f acc with | exception Unknown -> reset (); raise Unknown | acc -> Solver.pop (); acc end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>