package binsec
Semantic analysis of binary executables
Install
Dune Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
Maintainers
Sources
binsec-0.8.2.tbz
sha256=b8e7b9c756245656c481e992549fb7b1864ee6eeb492e16488e7a9d962d39cdb
sha512=07a5e4105e5275751fcc6832743f5f9eedc72bd061273ec54c4466135032852120df3784ba571656c788e5f3cd971aad8a53f030336a364e77e940e26dff38d7
doc/src/libterm/smt2_solver.ml.html
Source file smt2_solver.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2024 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) let byte_size = Natural.to_int Basic_types.Constants.bytesize module Session = struct let n = ref 0 type state = Dead | Assert | Sat | Unsat type session = { solver : Prover.t; mutable state : state; pid : Subprocess.t; stdin : out_channel; stdout : in_channel; stderr : in_channel; stdlog : out_channel option; fdlog : out_channel option; formatter : Format.formatter; } let close t = ignore @@ Subprocess.close t.pid; match t.fdlog with None -> () | Some fd -> close_out fd let start ?stdlog timeout solver = Options.Logger.debug "Openning session %d" !n; let fdlog = match Smt_options.SMT_dir.get_opt () with | None -> None | Some dir -> if not (Sys.file_exists dir) then Unix.mkdir dir 0o777; let filename = Filename.concat dir (Printf.sprintf "query_%d.smt2" !n) in Some (open_out filename) in incr n; let cmd = Prover.command ~incremental:true timeout solver in let pid = Subprocess.spawn ~pdeathsig:Sys.sigkill cmd in let stdin = Subprocess.stdin pid and stdout = Subprocess.stdout pid and stderr = Subprocess.stderr pid in let formatter = match (stdlog, fdlog) with | None, None -> Format.formatter_of_out_channel stdin | Some stdlog, None -> let output str pos len = output_substring stdlog str pos len; output_substring stdin str pos len and flush () = flush stdlog; flush stdin in Format.make_formatter output flush | None, Some fdlog -> let output str pos len = output_substring fdlog str pos len; output_substring stdin str pos len and flush () = flush fdlog; flush stdin in Format.make_formatter output flush | Some stdlog, Some fdlog -> let output str pos len = output_substring stdlog str pos len; output_substring fdlog str pos len; output_substring stdin str pos len and flush () = flush stdlog; flush fdlog; flush stdin in Format.make_formatter output flush in Format.fprintf formatter "@[<v 0>(set-option :print-success false)@ (set-info :smt-lib-version \ 2.5)@ (set-logic QF_ABV)@ @]"; { solver; state = Assert; pid; stdin; stdout; stderr; stdlog; fdlog; formatter; } type status = SAT | UNSAT | UNKNOWN let check_sat t = Format.fprintf t.formatter "(check-sat)@."; match input_line t.stdout with | "sat" -> t.state <- Sat; SAT | "unsat" -> t.state <- Unsat; UNSAT | "unknown" -> t.state <- Assert; UNKNOWN | s -> Options.Logger.fatal "Solver returned: %s" s | exception End_of_file -> t.state <- Dead; UNKNOWN let value_of_constant cst = let open Smtlib in match cst with | CstBool false -> Z.zero | CstBool true -> Z.one | CstBinary b -> Z.of_string_base 2 b | CstDecimal d | CstDecimalSize (d, _) -> Z.of_string_base 10 d | CstHexadecimal x -> Z.of_string_base 16 x | CstNumeral _ | CstString _ -> Options.Logger.fatal "Model construction: unexpected constant %a as bitvector value" Smtlib_pp.pp_spec_constant cst let get_value t pp x = assert (t.state = Sat); Format.fprintf t.formatter "(get-value (%a))@." pp x; let lexbuf = Lexing.from_channel t.stdout in let open Smtlib in match Smtlib_parser.ivalue Smtlib_lexer.token lexbuf with | [ (_, { term_desc = TermSpecConstant cst; _ }) ] -> value_of_constant cst | _ -> assert false let put t pp x = pp t.formatter x; Format.pp_print_space t.formatter (); t.state <- Assert end (* utils *) let pp_int_as_bv ppf x = function | 1 -> Format.fprintf ppf "#b%d" (x land 1) | 4 -> Format.fprintf ppf "#x%01x" (x land 0xf) | 8 -> Format.fprintf ppf "#x%02x" (x land 0xff) | 12 -> Format.fprintf ppf "#x%03x" (x land 0xfff) | 16 -> Format.fprintf ppf "#x%04x" (x land 0xffff) | 20 -> Format.fprintf ppf "#x%05x" (x land 0xfffff) | 24 -> Format.fprintf ppf "#x%06x" (x land 0xffffff) | 28 -> Format.fprintf ppf "#x%07x" (x land 0xfffffff) | 32 -> Format.fprintf ppf "#x%08x" (x land 0xffffffff) | sz when x < 0 -> Format.fprintf ppf "(_ bv%a %d)" Z.pp_print (Z.extract (Z.of_int x) 0 sz) sz | sz -> Format.fprintf ppf "(_ bv%d %d)" x sz let pp_bv ppf value size = try pp_int_as_bv ppf (Z.to_int value) size with Z.Overflow -> Format.fprintf ppf "(_ bv%a %d)" Z.pp_print (if Z.lt value Z.zero then Z.extract value 0 size else value) size module Printer = struct open Sexpr type term = string * int type access = Select of term * int | Store of term * int and def = Bl of Expr.t | Bv of Expr.t | Ax of Memory.t and t = { fvariables : Expr.t StTbl.t; farrays : Memory.t StTbl.t; mutable id : Suid.t; bv_decl : string BvTbl.t; bl_cons : string BvTbl.t; bv_cons : string BvTbl.t; ax_cons : string AxTbl.t; ax_root : Memory.t AxTbl.t; ordered_defs : def Queue.t; ordered_mem : access Queue.t AxTbl.t; word_size : int; debug : name:string -> label:string -> string; } let create ?(word_size = Kernel_options.Machine.word_size ()) ?(debug = fun ~name ~label:_ -> name) ~next_id () = let bv_cons = BvTbl.create 128 and bl_cons = BvTbl.create 32 in BvTbl.add bl_cons Expr.zero "false"; BvTbl.add bv_cons Expr.zero "#b0"; BvTbl.add bl_cons Expr.one "true"; BvTbl.add bv_cons Expr.one "#b1"; { fvariables = StTbl.create 16; farrays = StTbl.create 4; id = next_id; bv_decl = BvTbl.create 16; bl_cons; bv_cons; ax_cons = AxTbl.create 64; ax_root = AxTbl.create 64; ordered_defs = Queue.create (); ordered_mem = AxTbl.create 4; word_size; debug; } let pp_int_as_offset size ppf i = pp_bv ppf i size let once = "" let rec visit_bl ctx bl = try if BvTbl.find ctx.bl_cons bl == once then ( let name = Suid.to_string ctx.id in ctx.id <- Suid.incr ctx.id; BvTbl.replace ctx.bl_cons bl name) with Not_found -> ( match bl with | Cst _ -> () | Load _ (* cannot be a bl<1> *) -> assert false | Unary { f = Not; x; _ } -> BvTbl.add ctx.bl_cons bl once; visit_bl ctx x; Queue.push (Bl bl) ctx.ordered_defs | Binary { f = And | Or; x; y; _ } -> BvTbl.add ctx.bl_cons bl once; visit_bl ctx x; visit_bl ctx y; Queue.push (Bl bl) ctx.ordered_defs | Binary { f = Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt; x; y; _; } -> BvTbl.add ctx.bl_cons bl once; visit_bv ctx x; visit_bv ctx y; Queue.push (Bl bl) ctx.ordered_defs | Ite { c; t; e; _ } -> BvTbl.add ctx.bl_cons bl once; visit_bl ctx c; visit_bl ctx t; visit_bl ctx e; Queue.push (Bl bl) ctx.ordered_defs | Var _ | Unary _ | Binary _ -> visit_bv ctx bl) and visit_bv ctx bv = try if BvTbl.find ctx.bv_cons bv == once then ( let name = Suid.to_string ctx.id in ctx.id <- Suid.incr ctx.id; BvTbl.replace ctx.bv_cons bv name) with Not_found -> ( match bv with | Var { name; size; label; _ } -> StTbl.add ctx.fvariables name bv; let name = ctx.debug ~name ~label in BvTbl.add ctx.bv_cons bv name; if size = 1 then BvTbl.add ctx.bl_cons bv (Printf.sprintf "(= %s #b1)" name); BvTbl.add ctx.bv_decl bv (Format.sprintf "(declare-fun %s () (_ BitVec %d))" name size) | Load { len; addr; label; _ } -> BvTbl.add ctx.bv_cons bv once; visit_bv ctx addr; visit_bv ctx addr; visit_ax ctx label; if len > 1 then visit_ax ctx label; Queue.push (Bv bv) ctx.ordered_defs; let root = AxTbl.find ctx.ax_root label in let ordered_mem = AxTbl.find ctx.ordered_mem root in Queue.push (Select ((BvTbl.find ctx.bv_cons addr, Expr.sizeof addr), len)) ordered_mem | Cst _ -> BvTbl.add ctx.bv_cons bv once; Queue.push (Bv bv) ctx.ordered_defs | Unary { x; _ } -> BvTbl.add ctx.bv_cons bv once; visit_bv ctx x; Queue.push (Bv bv) ctx.ordered_defs | Binary { f = Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt; _ } -> BvTbl.add ctx.bv_cons bv once; visit_bl ctx bv; Queue.push (Bv bv) ctx.ordered_defs | Binary { f = Rol | Ror; x; y = (Load _ | Unary _ | Binary _ | Ite _) as y; _; } -> BvTbl.add ctx.bv_cons bv once; visit_bv ctx x; visit_bv ctx x; visit_bv ctx y; visit_bv ctx y; Queue.push (Bv bv) ctx.ordered_defs | Binary { x; y; _ } -> BvTbl.add ctx.bv_cons bv once; visit_bv ctx x; visit_bv ctx y; Queue.push (Bv bv) ctx.ordered_defs | Ite { c; t; e; _ } -> BvTbl.add ctx.bv_cons bv once; visit_bl ctx c; visit_bv ctx t; visit_bv ctx e; Queue.push (Bv bv) ctx.ordered_defs) and visit_ax ctx (ax : Memory.t) = try if AxTbl.find ctx.ax_cons ax == once then ( let name = Suid.to_string ctx.id in ctx.id <- Suid.incr ctx.id; AxTbl.replace ctx.ax_cons ax name) with Not_found -> ( match ax with | Root -> AxTbl.add ctx.ax_cons ax (ctx.debug ~name:Suid.(to_string zero) ~label:"memory"); AxTbl.add ctx.ax_root ax ax; AxTbl.add ctx.ordered_mem ax (Queue.create ()) | Symbol name -> StTbl.add ctx.farrays name ax; AxTbl.add ctx.ax_cons ax name; AxTbl.add ctx.ax_root ax ax; AxTbl.add ctx.ordered_mem ax (Queue.create ()) | Layer { addr = Cst _; store; over; _ } -> AxTbl.add ctx.ax_cons ax once; Store.iter_term (fun _ bv -> visit_bv ctx bv; if Expr.sizeof bv > 1 then visit_bv ctx bv) store; visit_ax ctx over; let root = AxTbl.find ctx.ax_root over in AxTbl.add ctx.ax_root ax root; Queue.push (Ax ax) ctx.ordered_defs; let ordered_mem = AxTbl.find ctx.ordered_mem root in Store.iter_term (fun i bv -> let index = Format.asprintf "%a" (pp_int_as_offset ctx.word_size) i in Queue.push (Store ((index, ctx.word_size), Expr.sizeof bv)) ordered_mem) store | Layer { addr; store; over; _ } -> AxTbl.add ctx.ax_cons ax once; visit_bv ctx addr; visit_bv ctx addr; Store.iter_term (fun _ bv -> visit_bv ctx bv; if Expr.sizeof bv > 1 then visit_bv ctx bv) store; visit_ax ctx over; let root = AxTbl.find ctx.ax_root over in AxTbl.add ctx.ax_root ax root; Queue.push (Ax ax) ctx.ordered_defs; let ordered_mem = AxTbl.find ctx.ordered_mem root in let index = BvTbl.find ctx.bv_cons addr in Store.iter_term (fun i bv -> let index = Format.asprintf "(bvadd %s %a)" index (pp_int_as_offset ctx.word_size) i in Queue.push (Store ((index, ctx.word_size), Expr.sizeof bv)) ordered_mem) store) let pp_unop ppf (op : Term.unary Term.operator) = match op with | Not -> Format.pp_print_string ppf "bvnot" | Minus -> Format.pp_print_string ppf "bvneg" | Uext n -> Format.fprintf ppf "(_ zero_extend %d)" n | Sext n -> Format.fprintf ppf "(_ sign_extend %d)" n | Restrict { Interval.hi; lo } -> Format.fprintf ppf "(_ extract %d %d)" hi lo let pp_binop = let string_of_binop (op : Term.binary Term.operator) = match op with | Plus -> "bvadd" | Minus -> "bvsub" | Mul -> "bvmul" | Udiv -> "bvudiv" | Sdiv -> "bvsdiv" | Umod -> "bvurem" | Smod -> "bvsrem" | Or -> "bvor" | And -> "bvand" | Xor -> "bvxor" | Concat -> "concat" | Lsl -> "bvshl" | Lsr -> "bvlshr" | Asr -> "bvashr" | Rol -> "rotate_left" | Ror -> "rotate_right" | Eq -> "=" | Diff -> assert false | Ule -> "bvule" | Ult -> "bvult" | Uge -> "bvuge" | Ugt -> "bvugt" | Sle -> "bvsle" | Slt -> "bvslt" | Sge -> "bvsge" | Sgt -> "bvsgt" in fun ppf f -> Format.pp_print_string ppf (string_of_binop f) let rec print_bl ctx ppf bl = try let name = BvTbl.find ctx.bl_cons bl in if name == once then print_bl_no_cons ctx ppf bl else Format.pp_print_string ppf name with Not_found -> Format.pp_print_string ppf "(= "; Format.pp_print_space ppf (); print_bv ctx ppf bl; Format.pp_print_string ppf " #b1)" and print_bl_no_cons ctx ppf bl = match bl with | Cst _ (* true and false should already be in the cache *) | Load _ (* cannot be a bl<1> *) -> assert false | Unary { f = Not; x; _ } -> Format.pp_print_string ppf "(not"; Format.pp_print_space ppf (); print_bl ctx ppf x; Format.pp_print_char ppf ')' | Binary { f = (And | Or) as f; x; y; _ } -> Format.pp_print_char ppf '('; (Format.pp_print_string ppf @@ match f with And -> "and" | Or -> "or" | _ -> assert false); Format.pp_print_space ppf (); print_bl ctx ppf x; Format.pp_print_space ppf (); print_bl ctx ppf y; Format.pp_print_char ppf ')' | Binary { f = Diff; x; y; _ } -> Format.pp_print_string ppf "(not"; Format.pp_print_space ppf (); Format.pp_print_string ppf "(="; Format.pp_print_space ppf (); print_bv ctx ppf x; Format.pp_print_space ppf (); print_bv ctx ppf y; Format.pp_print_string ppf "))" | Binary { f = (Eq | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt) as f; x; y; _; } -> Format.pp_print_char ppf '('; pp_binop ppf f; Format.pp_print_space ppf (); print_bv ctx ppf x; Format.pp_print_space ppf (); print_bv ctx ppf y; Format.pp_print_char ppf ')' | Ite { c; t; e; _ } -> Format.pp_print_string ppf "(ite"; Format.pp_print_space ppf (); print_bl ctx ppf c; Format.pp_print_space ppf (); print_bl ctx ppf t; Format.pp_print_space ppf (); print_bl ctx ppf e; Format.pp_print_char ppf ')' | Var _ | Unary _ | Binary _ -> Format.pp_print_string ppf "(="; Format.pp_print_space ppf (); print_bv ctx ppf bl; Format.pp_print_space ppf (); Format.pp_print_string ppf "#b1)" and print_bv ctx ppf bv = let name = BvTbl.find ctx.bv_cons bv in if name == once then print_bv_no_cons ctx ppf bv else Format.pp_print_string ppf name and print_bv_no_cons ctx ppf bv = match bv with | Var { name; _ } -> Format.pp_print_string ppf name | Load { len = 1; addr; label; _ } -> Format.pp_print_string ppf "(select"; Format.pp_print_space ppf (); print_ax ctx ppf label; Format.pp_print_space ppf (); print_bv ctx ppf addr; Format.pp_print_char ppf ')' | Load { len; dir; addr; label; _ } -> Format.pp_print_string ppf "(concat"; print_multi_select dir ppf len (AxTbl.find ctx.ax_cons label) (BvTbl.find ctx.bv_cons addr) (Expr.sizeof addr); Format.pp_print_char ppf ')' | Cst bv -> let size = Bv.size_of bv and value = Bv.value_of bv in pp_bv ppf value size | Unary { f; x; _ } -> Format.pp_print_char ppf '('; pp_unop ppf f; Format.pp_print_space ppf (); print_bv ctx ppf x; Format.pp_print_char ppf ')' | Binary { f = Eq | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt; _ } -> Format.pp_print_string ppf "(ite"; Format.pp_print_space ppf (); print_bl ctx ppf bv; Format.pp_print_space ppf (); Format.pp_print_string ppf "#b1"; Format.pp_print_space ppf (); Format.pp_print_string ppf "#b0)" | Binary { f = Diff; x; y; _ } -> Format.pp_print_string ppf "(ite (="; Format.pp_print_space ppf (); print_bv ctx ppf x; Format.pp_print_space ppf (); print_bv ctx ppf y; Format.pp_print_char ppf ')'; Format.pp_print_space ppf (); Format.pp_print_string ppf "#b0"; Format.pp_print_space ppf (); Format.pp_print_string ppf "#b1)" | Binary { f = (Rol | Ror) as f; x; y = Cst bv; _ } -> Format.pp_print_string ppf "((_"; Format.pp_print_space ppf (); pp_binop ppf f; Format.pp_print_space ppf (); Z.pp_print ppf (Bv.value_of bv); Format.pp_print_char ppf ')'; Format.pp_print_space ppf (); print_bv ctx ppf x; Format.pp_print_char ppf ')' | Binary { f = (Rol | Ror) as f; x; y; _ } -> Format.pp_print_string ppf "(bvor"; Format.pp_print_space ppf (); Format.pp_print_char ppf '('; pp_binop ppf (match f with Rol -> Lsl | Ror -> Lsr | _ -> assert false); Format.pp_print_space ppf (); Format.pp_print_string ppf (BvTbl.find ctx.bv_cons x); Format.pp_print_space ppf (); Format.pp_print_string ppf (BvTbl.find ctx.bv_cons y); Format.pp_print_char ppf ')'; Format.pp_print_space ppf (); Format.pp_print_char ppf '('; pp_binop ppf (match f with Rol -> Lsr | Ror -> Lsl | _ -> assert false); Format.pp_print_space ppf (); Format.pp_print_string ppf (BvTbl.find ctx.bv_cons x); Format.pp_print_space ppf (); Format.pp_print_string ppf "(bvsub"; Format.pp_print_space ppf (); pp_int_as_bv ppf (Expr.sizeof x) (Expr.sizeof x); Format.pp_print_space ppf (); Format.pp_print_string ppf (BvTbl.find ctx.bv_cons y); Format.pp_print_string ppf ")))" | Binary { f; x; y; _ } -> Format.pp_print_char ppf '('; pp_binop ppf f; Format.pp_print_space ppf (); print_bv ctx ppf x; Format.pp_print_space ppf (); print_bv ctx ppf y; Format.pp_print_char ppf ')' | Ite { c; t; e; _ } -> Format.pp_print_string ppf "(ite"; Format.pp_print_space ppf (); print_bl ctx ppf c; Format.pp_print_space ppf (); print_bv ctx ppf t; Format.pp_print_space ppf (); print_bv ctx ppf e; Format.pp_print_char ppf ')' and print_ax ctx ppf ax = let name = AxTbl.find ctx.ax_cons ax in if name == once then print_ax_no_cons ctx ppf ax else Format.pp_print_string ppf name and print_ax_no_cons ctx ppf (ax : Memory.t) = match ax with | Root -> Suid.pp ppf Suid.zero | Symbol _ -> assert false | Layer { addr; store; over; _ } -> Store.iter_term (fun _ value -> for _ = 1 to Expr.sizeof value lsr 3 do Format.pp_print_string ppf "(store"; Format.pp_print_space ppf () done) store; print_ax ctx ppf over; let addr_space = ctx.word_size in let rebase, idx = match addr with | Cst _ -> (false, "") | _ -> (true, BvTbl.find ctx.bv_cons addr) in let rec unroll_store lo i bv = Format.pp_print_space ppf (); if rebase then if Z.zero = i then ( Format.pp_print_string ppf idx; Format.pp_print_space ppf ()) else ( Format.pp_print_string ppf "(bvadd"; Format.pp_print_space ppf (); Format.pp_print_string ppf idx; Format.pp_print_space ppf (); pp_bv ppf i addr_space; Format.pp_print_char ppf ')') else pp_bv ppf i addr_space; Format.pp_print_space ppf (); let size = Expr.sizeof bv in if size > 8 then ( Format.fprintf ppf "((_ extract %d %d)" (lo + 7) lo; Format.pp_print_space ppf (); print_bv ctx ppf bv; Format.pp_print_string ppf "))"; let lo' = lo + 8 in if lo' < size then unroll_store lo' (Z.succ i) bv) else ( print_bv ctx ppf bv; Format.pp_print_char ppf ')') in Store.iter_term (unroll_store 0) store and print_multi_select = let rec print_multi_select_le ppf len ax bv size = if len = 1 then Format.fprintf ppf " (select@ %s@ %s)" ax bv else let len = len - 1 in Format.fprintf ppf " (select@ %s@ (bvadd@ %s@ " ax bv; pp_int_as_bv ppf len size; Format.pp_print_string ppf "))"; print_multi_select_le ppf len ax bv size in let rec print_multi_select_be i ppf len ax bv size = if i = 0 then ( Format.fprintf ppf "@ (select@ %s@ %s)" ax bv; print_multi_select_be 1 ppf len ax bv size) else if i < len then ( Format.fprintf ppf " (select@ %s@ (bvadd@ %s@ " ax bv; pp_int_as_bv ppf i size; Format.pp_print_string ppf "))"; print_multi_select_be (i + 1) ppf len ax bv size) in function | LittleEndian -> print_multi_select_le | BigEndian -> print_multi_select_be 0 let pp_print_decls ppf ctx = BvTbl.iter (fun _ decl -> Format.pp_print_string ppf decl; Format.pp_print_space ppf ()) ctx.bv_decl; AxTbl.iter (fun (ax : Memory.t) ordered_mem -> match ax with | Root -> Format.fprintf ppf "(declare-fun %s () (Array (_ BitVec %d) (_ BitVec %d)))@ " (ctx.debug ~name:Suid.(to_string zero) ~label:"memory") ctx.word_size byte_size | Symbol name -> if not (Queue.is_empty ordered_mem) then Format.fprintf ppf "(declare-fun %s () (Array (_ BitVec %d) (_ BitVec %d)))@ " name ctx.word_size byte_size | _ -> assert false) ctx.ordered_mem let pp_print_defs ppf ctx = Queue.iter (function | Bl bl -> let name = BvTbl.find ctx.bl_cons bl in if name != once then ( Format.fprintf ppf "@[<h>(define-fun %s () Bool " name; print_bl_no_cons ctx ppf bl; Format.fprintf ppf ")@]@ ") | Bv bv -> let name = BvTbl.find ctx.bv_cons bv in if name != once then ( Format.fprintf ppf "@[<h>(define-fun %s () (_ BitVec %d) " name (Expr.sizeof bv); print_bv_no_cons ctx ppf bv; Format.fprintf ppf ")@]@ ") | Ax ax -> let name = AxTbl.find ctx.ax_cons ax in if name != once then ( Format.fprintf ppf "@[<h>(define-fun %s () (Array (_ BitVec %d) (_ BitVec %d)) " name (Kernel_options.Machine.word_size ()) byte_size; print_ax_no_cons ctx ppf ax; Format.fprintf ppf ")@]@ ")) ctx.ordered_defs let pp_print_bl = print_bl let pp_print_bv = print_bv let pp_print_ax = print_ax end module Cross = struct open Sexpr type k = | Bl of Expr.t | Bv of Expr.t | Ax of Memory.t | Assert of Expr.t | BvDefine of Formula.bv_var * Expr.t | AxDefine of Formula.ax_var * Memory.t and t = { mutable id : Suid.t; bv_decl : Formula.decl BvTbl.t; ax_decl : Formula.decl AxTbl.t; bl_cons : Formula.bl_var BvTbl.t; bv_cons : Formula.bv_var BvTbl.t; ax_cons : Formula.ax_var AxTbl.t; ordered : k Queue.t; word_size : int; debug : name:string -> label:string -> string; } let create ?(word_size = Kernel_options.Machine.word_size ()) ?(debug = fun ~name ~label:_ -> name) ~next_id () = { id = next_id; bv_decl = BvTbl.create 16; ax_decl = AxTbl.create 1; bl_cons = BvTbl.create 32; bv_cons = BvTbl.create 128; ax_cons = AxTbl.create 64; ordered = Queue.create (); word_size; debug; } let bl_once = Formula.bl_var "!" let bv_once = Formula.bv_var "!" 1 let ax_once = Formula.ax_var "!" 1 1 let rec visit_bl ctx bl = try if BvTbl.find ctx.bl_cons bl == bl_once then ( let name = Suid.to_string ctx.id in ctx.id <- Suid.incr ctx.id; BvTbl.replace ctx.bl_cons bl (Formula.bl_var name)) with Not_found -> ( match bl with | Cst _ -> () | Load _ (* cannot be a bl<1> *) -> assert false | Unary { f = Not; x; _ } -> BvTbl.add ctx.bl_cons bl bl_once; visit_bl ctx x; Queue.push (Bl bl) ctx.ordered | Binary { f = And | Or; x; y; _ } -> BvTbl.add ctx.bl_cons bl bl_once; visit_bl ctx x; visit_bl ctx y; Queue.push (Bl bl) ctx.ordered | Binary { f = Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt; x; y; _; } -> BvTbl.add ctx.bl_cons bl bl_once; visit_bv ctx x; visit_bv ctx y; Queue.push (Bl bl) ctx.ordered | Ite { c; t; e; _ } -> BvTbl.add ctx.bl_cons bl bl_once; visit_bl ctx c; visit_bl ctx t; visit_bl ctx e; Queue.push (Bl bl) ctx.ordered | Var _ | Unary _ | Binary _ -> visit_bv ctx bl) and visit_bv ctx bv = try if BvTbl.find ctx.bv_cons bv == bv_once then ( let name = Suid.to_string ctx.id in ctx.id <- Suid.incr ctx.id; BvTbl.replace ctx.bv_cons bv (Formula.bv_var name (Expr.sizeof bv))) with Not_found -> ( match bv with | Var { name; size; label; _ } -> let name = ctx.debug ~name ~label in let var = Formula.bv_var name size in BvTbl.add ctx.bv_cons bv var; BvTbl.add ctx.bv_decl bv (Formula.mk_bv_decl var []) | Load { addr; label; _ } -> BvTbl.add ctx.bv_cons bv bv_once; visit_bv ctx addr; visit_ax ctx label; Queue.push (Bv bv) ctx.ordered | Cst _ -> BvTbl.add ctx.bv_cons bv bv_once; Queue.push (Bv bv) ctx.ordered | Unary { x; _ } -> BvTbl.add ctx.bv_cons bv bv_once; visit_bv ctx x; Queue.push (Bv bv) ctx.ordered | Binary { f = Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt; _ } -> BvTbl.add ctx.bv_cons bv bv_once; visit_bl ctx bv; Queue.push (Bv bv) ctx.ordered | Binary { x; y; _ } -> BvTbl.add ctx.bv_cons bv bv_once; visit_bv ctx x; visit_bv ctx y; Queue.push (Bv bv) ctx.ordered | Ite { c; t; e; _ } -> BvTbl.add ctx.bv_cons bv bv_once; visit_bl ctx c; visit_bv ctx t; visit_bv ctx e; Queue.push (Bv bv) ctx.ordered) and visit_ax ctx ax = try if AxTbl.find ctx.ax_cons ax == ax_once then ( let name = Suid.to_string ctx.id in ctx.id <- Suid.incr ctx.id; AxTbl.replace ctx.ax_cons ax (Formula.ax_var name ctx.word_size 8)) with Not_found -> ( match ax with | Memory.Root -> let var = Formula.ax_var (ctx.debug ~name:Suid.(to_string zero) ~label:"memory") ctx.word_size 8 in AxTbl.add ctx.ax_cons ax var; AxTbl.add ctx.ax_decl ax (Formula.mk_ax_decl var []) | Memory.Symbol name -> let var = Formula.ax_var (ctx.debug ~name ~label:"") ctx.word_size 8 in AxTbl.add ctx.ax_cons ax var; AxTbl.add ctx.ax_decl ax (Formula.mk_ax_decl var []) | Memory.Layer { addr; store; over; _ } -> AxTbl.add ctx.ax_cons ax ax_once; visit_bv ctx addr; Store.iter_term (fun _ bv -> visit_bv ctx bv) store; visit_ax ctx over; Queue.push (Ax ax) ctx.ordered) let assert_bl ctx bl = visit_bl ctx bl; Queue.push (Assert bl) ctx.ordered let define_bv ctx name bv = visit_bv ctx bv; let var = Formula.bv_var name (Expr.sizeof bv) in Queue.push (BvDefine (var, bv)) ctx.ordered let define_ax ctx name ax = visit_ax ctx ax; let var = Formula.ax_var name ctx.word_size 8 in Queue.push (AxDefine (var, ax)) ctx.ordered let mk_unop (op : Term.unary Term.operator) = match op with | Not -> Formula.BvNot | Minus -> Formula.BvNeg | Uext n -> Formula.BvZeroExtend n | Sext n -> Formula.BvSignExtend n | Restrict i -> Formula.BvExtract i let mk_comp (op : Term.binary Term.operator) = match op with | Eq -> Formula.BvEqual | Diff -> Formula.BvDistinct | Uge -> Formula.BvUge | Ule -> Formula.BvUle | Ugt -> Formula.BvUgt | Ult -> Formula.BvUlt | Sge -> Formula.BvSge | Sle -> Formula.BvSle | Sgt -> Formula.BvSgt | Slt -> Formula.BvSlt | Plus | Minus | Mul | Udiv | Sdiv | Umod | Smod | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror -> assert false let mk_bnop (op : Term.binary Term.operator) = match op with | Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt -> assert false | Plus -> Formula.BvAdd | Minus -> Formula.BvSub | Mul -> Formula.BvMul | Udiv -> Formula.BvUdiv | Sdiv -> Formula.BvSdiv | Umod -> Formula.BvUrem | Smod -> Formula.BvSmod | Or -> Formula.BvOr | And -> Formula.BvAnd | Xor -> Formula.BvXor | Concat -> Formula.BvConcat | Lsl -> Formula.BvShl | Lsr -> Formula.BvLshr | Asr -> Formula.BvAshr | Rol | Ror -> assert false let rec mk_bl ctx bl = try let var = BvTbl.find ctx.bl_cons bl in if var == bl_once then mk_bl_no_cons ctx bl else Formula.mk_bl_var var with Not_found -> Formula.mk_bv_equal (mk_bv ctx bl) Formula.mk_bv_one and mk_bl_no_cons ctx bl = match bl with | Cst bv -> if Bitvector.is_one bv then Formula.mk_bl_true else Formula.mk_bl_false | Load _ (* cannot be a bl<1> *) -> assert false | Unary { f = Not; x; _ } -> Formula.mk_bl_not (mk_bl ctx x) | Binary { f = And; x; y; _ } -> Formula.mk_bl_and (mk_bl ctx x) (mk_bl ctx y) | Binary { f = Or; x; y; _ } -> Formula.mk_bl_or (mk_bl ctx x) (mk_bl ctx y) | Binary { f = (Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt) as f; x; y; _; } -> Formula.mk_bv_comp (mk_comp f) (mk_bv ctx x) (mk_bv ctx y) | Ite { c; t; e; _ } -> Formula.mk_bl_ite (mk_bl ctx c) (mk_bl ctx t) (mk_bl ctx e) | Var _ | Unary _ | Binary _ -> Formula.mk_bv_equal (mk_bv ctx bl) Formula.mk_bv_one and mk_bv ctx bv = let var = BvTbl.find ctx.bv_cons bv in if var == bv_once then mk_bv_no_cons ctx bv else Formula.mk_bv_var var and mk_bv_no_cons ctx bv = match bv with | Var _ -> assert false | Load { len; dir = LittleEndian; addr; label; _ } -> Formula.mk_select len (mk_ax ctx label) (mk_bv ctx addr) | Load { len; dir = BigEndian; addr; label; _ } -> mk_select_be len (mk_ax ctx label) (mk_bv ctx addr) | Cst bv -> Formula.mk_bv_cst bv | Unary { f; x; _ } -> Formula.mk_bv_unop (mk_unop f) (mk_bv ctx x) | Binary { f = Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt; _ } -> Formula.mk_bv_ite (mk_bl ctx bv) Formula.mk_bv_one Formula.mk_bv_zero | Binary { f = Rol; x; y = Cst bv; _ } -> Formula.mk_bv_rotate_left (Bv.to_uint bv) (mk_bv ctx x) | Binary { f = Ror; x; y = Cst bv; _ } -> Formula.mk_bv_rotate_right (Bv.to_uint bv) (mk_bv ctx x) | Binary { f = Rol; x; y; _ } -> Formula.mk_bv_or (Formula.mk_bv_shl (mk_bv ctx x) (mk_bv ctx y)) (Formula.mk_bv_lshr (mk_bv ctx x) (Formula.mk_bv_sub_int (mk_bv ctx y) (Expr.sizeof x))) | Binary { f = Ror; x; y; _ } -> Formula.mk_bv_or (Formula.mk_bv_lshr (mk_bv ctx x) (mk_bv ctx y)) (Formula.mk_bv_shl (mk_bv ctx x) (Formula.mk_bv_sub_int (mk_bv ctx y) (Expr.sizeof x))) | Binary { f; x; y; _ } -> Formula.mk_bv_bnop (mk_bnop f) (mk_bv ctx x) (mk_bv ctx y) | Ite { c; t; e; _ } -> Formula.mk_bv_ite (mk_bl ctx c) (mk_bv ctx t) (mk_bv ctx e) and mk_ax ctx ax = let var = AxTbl.find ctx.ax_cons ax in if var == ax_once then mk_ax_no_cons ctx ax else Formula.mk_ax_var var and mk_ax_no_cons ctx ax = match ax with | Memory.Root | Memory.Symbol _ -> assert false | Memory.Layer { addr; store; over; _ } -> let addr = mk_bv ctx addr in Store.fold_term (fun i bv store -> Formula.mk_store 1 store (Formula.mk_bv_add addr (Formula.mk_bv_cst (Bitvector.create i ctx.word_size))) (mk_bv ctx bv)) (mk_ax ctx over) store and mk_select_be = let rec mk_select_be len ax bv sel = if len = 0 then sel else let len = len - 1 in mk_select_be len ax bv (Formula.mk_bv_concat sel (Formula.mk_select 1 ax (Formula.mk_bv_add_int bv len))) in fun len ax bv -> let len = len - 1 in mk_select_be len ax bv (Formula.mk_select 1 ax (Formula.mk_bv_add_int bv len)) let to_formula ctx = Queue.fold (fun formula -> function | Bl bl -> let var = BvTbl.find ctx.bl_cons bl in if var != bl_once then Formula.push_front_define (Formula.mk_bl_def var [] (mk_bl_no_cons ctx bl)) formula else formula | Bv bv -> let var = BvTbl.find ctx.bv_cons bv in if var != bv_once then Formula.push_front_define (Formula.mk_bv_def var [] (mk_bv_no_cons ctx bv)) formula else formula | Ax ax -> let var = AxTbl.find ctx.ax_cons ax in if var != ax_once then Formula.push_front_define (Formula.mk_ax_def var [] (mk_ax_no_cons ctx ax)) formula else formula | Assert bl -> Formula.push_front_assert (mk_bl ctx bl) formula | BvDefine (var, bv) -> Formula.push_front_define (Formula.mk_bv_def var [] (mk_bv ctx bv)) formula | AxDefine (var, ax) -> Formula.push_front_define (Formula.mk_ax_def var [] (mk_ax ctx ax)) formula) (BvTbl.fold (fun _ decl formula -> Formula.push_front_declare decl formula) ctx.bv_decl (AxTbl.fold (fun _ decl formula -> Formula.push_front_declare decl formula) ctx.ax_decl Formula.empty)) ctx.ordered end module Solver () : Solver_sig.S = struct open Sexpr type result = Sat | Unsat | Unknown type term = Printer.term let put (ctx : Printer.t) ppf constraints = Format.pp_open_vbox ppf 0; (* visit assertions *) List.iter (Printer.visit_bl ctx) constraints; (* print declarations *) Printer.pp_print_decls ppf ctx; (* print assertions *) Format.pp_open_hovbox ppf 0; Printer.pp_print_defs ppf ctx; List.iter (fun bl -> Format.pp_print_string ppf "(assert "; Printer.print_bl ctx ppf bl; Format.pp_print_char ppf ')'; Format.pp_print_space ppf ()) constraints; Format.pp_close_box ppf (); Format.pp_close_box ppf () let session = Session.start (* ~stdlog:stderr *) (Formula_options.Solver.Timeout.get ()) (Formula_options.Solver.get ()) let ctx = ref None let bind fid e constraints = let ctx = let x = Printer.create ~next_id:fid () in ctx := Some x; x in Printer.visit_ax ctx Memory.root; Printer.visit_bv ctx e; Printer.visit_bv ctx e; put ctx session.formatter constraints; (BvTbl.find ctx.bv_cons e, Expr.sizeof e) let put fid constraints = let ctx = let x = Printer.create ~next_id:fid () in ctx := Some x; x in Printer.visit_ax ctx Memory.root; put ctx session.formatter constraints let get e = (BvTbl.find (Option.get !ctx).bv_cons e, Expr.sizeof e) let set_memory ~addr y = Session.put session (fun ppf () -> Format.fprintf ppf "(assert (= (select %s " Suid.(to_string zero); Format.pp_print_char ppf ' '; pp_bv ppf addr (Option.get !ctx).Printer.word_size; Format.pp_print_string ppf ") "; pp_bv ppf y 8; Format.pp_print_string ppf "))") () let neq (e, s) x = Session.put session (fun ppf () -> Format.fprintf ppf "(assert (not (= %s " e; pp_bv ppf x s; Format.pp_print_string ppf ")))") () let get_value (x, _) = Session.get_value session Format.pp_print_string x let get_at name x s = Session.get_value session (fun ppf x -> Format.pp_print_string ppf "(select "; Format.pp_print_string ppf name; Format.pp_print_char ppf ' '; pp_bv ppf x s; Format.pp_print_char ppf ')') x let iter_free_variables f = StTbl.iter f (Option.get !ctx).fvariables let iter_free_arrays f = StTbl.iter f (Option.get !ctx).farrays let get_array ar = match AxTbl.find (Option.get !ctx).ordered_mem ar with | exception Not_found -> [||] | history -> if Queue.is_empty history then [||] else let dirty = BiTbl.create (Queue.length history) in let name = Format.asprintf "%a" (Printer.pp_print_ax (Option.get !ctx)) ar and addr_space = (Option.get !ctx).word_size in let binding = Queue.fold (fun binding (access : Printer.access) -> match access with | Select (index, len) -> let index = get_value index in let rec fold index len binding = if len = 0 then binding else if BiTbl.mem dirty index then fold (Z.succ index) (len - 1) binding else let k = get_at name index addr_space in fold (Z.succ index) (len - 1) ((index, Char.unsafe_chr (Z.to_int k)) :: binding) in fold index len binding | Store (index, len) -> let index = get_value index in let rec loop index len = if len <> 0 then ( BiTbl.replace dirty index (); loop (Z.succ index) (len - 1)) in loop index len; binding) [] history in Array.of_list binding let check_sat () = match Session.check_sat session with | UNKNOWN -> Unknown | UNSAT -> Unsat | SAT -> Sat let close () = Session.close session end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>