package binsec
Semantic analysis of binary executables
Install
Dune Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
Maintainers
Sources
binsec-0.8.1.tbz
sha256=94090e05906c7a0559f60d2c65dbe167eb5953a2338b958b71911c1c81dd9ffd
sha512=6f52f8918c3c242f1346ebdc244f80744966112b935e00519e5d4d5acc040f8e2d2c54ff6b172cf5eb34b9bf7366de085605de88fcc15c43f34abce39ed34220
doc/src/libterm/sexpr.ml.html
Source file sexpr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2023 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) module Bv = Bitvector module BiMap = Basic_types.BigInt.Map module rec Expr : (Term.S with type a := string and type b := Memory.t) = Term.Make (struct type t = string let compare _ _ = 0 let equal _ _ = true let hash _ = 0 end) (Memory) and Chunk : sig include Lmap.Value type hunk = (int, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t type kind = Hunk of hunk | Term of Expr.t val inspect : t -> kind val of_hunk : hunk -> t val of_term : Expr.t -> t val to_term : t -> Expr.t (** low level API *) val is_hunk : t -> bool val is_term : t -> bool val unsafe_to_hunk : t -> hunk val unsafe_to_term : t -> Expr.t end = struct type t type hunk = (int, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t type kind = Hunk of hunk | Term of Expr.t external is_unboxed : t -> bool = "%obj_is_int" external still_unboxed : Bv.t -> bool = "%obj_is_int" external to_bv : t -> Bv.t = "%identity" external of_bv : Bv.t -> t = "%identity" external unsafe_to_term : t -> Expr.t = "%identity" external of_term : Expr.t -> t = "%identity" external unsafe_to_hunk : t -> hunk = "%identity" external of_hunk : hunk -> t = "%identity" let is_hunk x = Obj.tag (Obj.repr x) = Obj.custom_tag let is_term x = is_unboxed x || not (is_hunk x) let of_bv bv = if still_unboxed bv then of_bv bv else of_term (Expr.constant bv) let inspect x = if is_unboxed x then Term (Expr.constant (to_bv x)) else if is_hunk x then Hunk (unsafe_to_hunk x) else Term (unsafe_to_term x) let equal x y = x == y || (not (is_unboxed x)) && (not (is_hunk x)) && (not (is_unboxed y)) && (not (is_hunk y)) && Expr.is_equal (unsafe_to_term x) (unsafe_to_term y) let len x = if is_unboxed x then Bv.size_of (to_bv x) lsr 3 else if is_hunk x then Bigarray.Array1.dim (unsafe_to_hunk x) else Expr.sizeof (unsafe_to_term x) lsr 3 let crop ~lo ~hi x = if is_hunk x then of_hunk (Bigarray.Array1.sub (unsafe_to_hunk x) lo (hi - lo + 1)) else let lo = lo lsl 3 and hi = (hi lsl 3) + 7 in if is_unboxed x then of_bv (Bv.extract (to_bv x) { lo; hi }) else of_term (Expr.restrict ~lo ~hi (unsafe_to_term x)) let hunk_to_bv x = let x = unsafe_to_hunk x in let s = Bigarray.Array1.dim x in Bv.create (Z.of_bits (String.init s (fun i -> Char.unsafe_chr (Bigarray.Array1.unsafe_get x i)))) (s lsl 3) let concat x y = if is_unboxed x then if is_unboxed y then of_bv (Bv.append (to_bv x) (to_bv y)) else if is_hunk y then of_bv (Bv.append (to_bv x) (hunk_to_bv y)) else of_term (Expr.append (Expr.constant (to_bv x)) (unsafe_to_term y)) else if is_hunk x then if is_unboxed y then of_bv (Bv.append (hunk_to_bv x) (to_bv y)) else if is_hunk y then of_bv (Bv.append (hunk_to_bv x) (hunk_to_bv y)) else of_term (Expr.append (Expr.constant (hunk_to_bv x)) (unsafe_to_term y)) else if is_unboxed y then of_term (Expr.append (unsafe_to_term x) (Expr.constant (to_bv y))) else if is_hunk y then of_term (Expr.append (unsafe_to_term x) (Expr.constant (hunk_to_bv y))) else of_term (Expr.append (unsafe_to_term x) (unsafe_to_term y)) let to_term x = if is_unboxed x then Expr.constant (to_bv x) else if is_hunk x then Expr.constant (hunk_to_bv x) else unsafe_to_term x let of_term (x : Expr.t) = match x with Cst bv -> of_bv bv | x -> of_term x end and Store : sig include Lmap.S with type v := Chunk.t val singleton : Bv.t -> Chunk.t -> t val store : Bv.t -> Chunk.t -> t -> t val select : (Z.t -> int -> Chunk.t) -> Bv.t -> int -> t -> Chunk.t val iter_term : (Z.t -> Expr.t -> unit) -> t -> unit val fold_term : (Z.t -> Expr.t -> 'a -> 'a) -> 'a -> t -> 'a end = struct include Lmap.Make (Chunk) let singleton k v = let z = Bv.value_of k and s = Chunk.len v in let u = Z.add z (Z.of_int s) in let n = Bv.size_of k in if Z.numbits u > n && Z.popcount u > 1 then let o = Z.to_int (Z.extract u 0 n) in store z (Chunk.crop ~hi:(s - o - 1) ~lo:0 v) (singleton Z.zero (Chunk.crop ~hi:(s - 1) ~lo:(s - o) v)) else singleton z v let store k v t = let z = Bv.value_of k and s = Chunk.len v in let u = Z.add z (Z.of_int s) in let n = Bv.size_of k in if Z.numbits u > n && Z.popcount u > 1 then let o = Z.to_int (Z.extract u 0 n) in store z (Chunk.crop ~hi:(s - o - 1) ~lo:0 v) (store Z.zero (Chunk.crop ~hi:(s - 1) ~lo:(s - o) v) t) else store z v t let select f k s t = let z = Bv.value_of k in let u = Z.add z (Z.of_int s) in let n = Bv.size_of k in if Z.numbits u > n && Z.popcount u > 1 then let o = Z.to_int (Z.extract u 0 n) in Chunk.concat (select f Z.zero o t) (select f z (s - o) t) else select f z s t let iter_term f t = iter (fun k v -> if not (Chunk.is_hunk v) then f k (Chunk.to_term v)) t let fold_term f b t = fold (fun k v b -> if not (Chunk.is_hunk v) then f k (Chunk.to_term v) b else b) b t end and Memory : sig type t = | Root | Symbol of string | Layer of { id : int; over : t; addr : Expr.t; store : Store.t } val compare : t -> t -> int val equal : t -> t -> bool val hash : t -> int val root : t val fresh : string -> t val layer : Expr.t -> Store.t -> t -> t end = struct type t = | Root | Symbol of string | Layer of { id : int; over : t; addr : Expr.t; store : Store.t } let id = ref 0 let hash = function | Root -> 0 | Symbol name -> Hashtbl.hash name | Layer { id; _ } -> id let compare t t' = hash t - hash t' let equal t t' = match (t, t') with | Root, Root -> true | Symbol id, Symbol id' -> id = id' | Layer { id; _ }, Layer { id = id'; _ } -> id = id' | (Root | Symbol _ | Layer _), (Root | Symbol _ | Layer _) -> false let root = Root let fresh name = Symbol name let layer addr store over = incr id; Layer { id = !id; over; addr; store } end module BvTbl = Hashtbl.Make (struct include Expr let equal = is_equal end) module AxTbl = Hashtbl.Make (Memory) module BiTbl = Basic_types.BigInt.Htbl module StTbl = Basic_types.String.Htbl module S = Basic_types.String.Map module I = Map.Make (struct type t = Z.t let compare x y = -Z.compare x y end) let bswap = let rec iter e i r = if i = 0 then r else iter e (i - 8) (Expr.append (Expr.restrict ~hi:(i - 1) ~lo:(i - 8) e) r) in fun e -> let size = Expr.sizeof e in assert (size land 0x7 = 0); iter e (size - 8) (Expr.restrict ~hi:(size - 1) ~lo:(size - 8) e) module Model = struct type t = Expr.t StTbl.t * Bv.t BvTbl.t * char BiTbl.t * char BiTbl.t StTbl.t * int let empty addr_space = (StTbl.create 0, BvTbl.create 0, BiTbl.create 0, StTbl.create 0, addr_space) let maybe_pp_char ppf c = if String_utils.is_char_printable c then Format.fprintf ppf " (%c)" c let pp_variables ppf vars values = if StTbl.length vars > 0 then ( Format.pp_print_string ppf "# Variables"; Format.pp_print_cut ppf (); StTbl.iter (fun name value -> Format.fprintf ppf "%s : %a@ " name Bitvector.pp_hex_or_bin (BvTbl.find values value)) vars) let pp_int_as_bv ppf x = function | 1 -> Format.fprintf ppf "#b%d" x | 4 -> Format.fprintf ppf "#x%01x" x | 8 -> Format.fprintf ppf "#x%02x" x | 12 -> Format.fprintf ppf "#x%03x" x | 16 -> Format.fprintf ppf "#x%04x" x | 20 -> Format.fprintf ppf "#x%05x" x | 24 -> Format.fprintf ppf "#x%06x" x | 28 -> Format.fprintf ppf "#x%07x" x | 32 -> Format.fprintf ppf "#x%08x" x | 64 when x >= 0 -> Format.fprintf ppf "#x%016x" x | sz -> Format.fprintf ppf "(_ bv%d %d)" x sz let pp_bv ppf value size = try pp_int_as_bv ppf (Z.to_int value) size with Z.Overflow -> Format.fprintf ppf "(_ bv%a %d)" Z.pp_print value size let pp_memory ppf memory addr_space = if BiTbl.length memory = 0 then Format.pp_print_string ppf "-- empty memory --" else ( Format.pp_print_string ppf "# Memory"; Format.pp_print_cut ppf (); let img = Kernel_functions.get_img () in let noname = "" in let section_name addr = try let address = Virtual_address.to_int (Virtual_address.of_bigint addr) in match Loader_utils.find_section_by_address ~address img with | None -> noname | Some section -> Loader.Section.name section with Virtual_address.Non_canonical_form -> noname in let pp_section ppf name = if name == noname then Format.pp_print_string ppf "unamed section" else Format.fprintf ppf "section %s" name in let last_section = ref "--" in I.iter (fun addr byte -> let name = section_name addr in if name <> !last_section then ( Format.fprintf ppf "; %a@ " pp_section name; last_section := name); pp_bv ppf addr addr_space; Format.fprintf ppf " : %02x %a@ " (Char.code byte) maybe_pp_char byte) @@ BiTbl.fold I.add memory I.empty) let pp_array ppf name array addr_space = Format.pp_print_string ppf "# Array "; Format.pp_print_string ppf name; Format.pp_print_cut ppf (); I.iter (fun addr byte -> pp_bv ppf addr addr_space; Format.fprintf ppf " : %02x %a@ " (Char.code byte) maybe_pp_char byte) @@ BiTbl.fold I.add array I.empty let pp ppf (vars, values, memory, arrays, addr_space) = if StTbl.length vars = 0 && BiTbl.length memory = 0 && StTbl.length arrays = 0 then Format.fprintf ppf "@[<h>--- Empty model ---@]" else ( Format.fprintf ppf "@[<v 0>--- Model ---@ "; pp_variables ppf vars values; Format.pp_print_space ppf (); pp_memory ppf memory addr_space; StTbl.iter (fun name array -> if BiTbl.length array <> 0 then ( Format.pp_print_space ppf (); pp_array ppf name array addr_space)) arrays; Format.pp_close_box ppf ()) let rec eval ?(symbols = fun e -> Bitvector.create (Z.of_int (Expr.hash e)) (Expr.sizeof e)) ?(memory = fun _ _ -> '\x00') ((vars, values, _, _, _) as m) = function | Expr.Cst bv -> bv | e -> ( try BvTbl.find values e with Not_found -> let value = match e with | Expr.Cst _ -> assert false | Expr.Var { name; _ } -> StTbl.add vars name e; symbols e | Expr.Load { addr; len; dir; label; _ } -> eval_load ~symbols ~memory m (eval ~symbols ~memory m addr) len dir label | Expr.Unary { f; x; _ } -> Term.Bv.unary f (eval ~symbols ~memory m x) | Expr.Binary { f; x; y; _ } -> Term.Bv.binary f (eval ~symbols ~memory m x) (eval ~symbols ~memory m y) | Expr.Ite { c; t; e; _ } -> if Bv.zero = eval ~symbols ~memory m c then eval ~symbols ~memory m e else eval ~symbols ~memory m t in BvTbl.add values e value; value) and eval_load ~symbols ~memory ((_, _, cache, arrays, addr_size) as t) ptr len dir (memory_term : Memory.t) = match memory_term with | Root -> let index = match dir with | LittleEndian -> Bv.add_int ptr | BigEndian -> let hi = Bv.add_int ptr (len - 1) in fun i -> Bv.add_int hi (-i) in let bits = String.init len (fun i -> let x = Bv.value_of (index i) in try BiTbl.find cache x with Not_found -> let byte = memory memory_term (Bv.create x addr_size) in BiTbl.add cache x byte; byte) in Bv.create (Z.of_bits bits) (len lsl 3) | Symbol n -> let index = match dir with | LittleEndian -> Bv.add_int ptr | BigEndian -> let hi = Bv.add_int ptr (len - 1) in fun i -> Bv.add_int hi (-i) in let bits = String.init len (fun i -> let x = Bv.value_of (index i) and arr = try StTbl.find arrays n with Not_found -> let arr = BiTbl.create 16 in StTbl.add arrays n arr; arr in try BiTbl.find arr x with Not_found -> let byte = memory memory_term (Bv.create x addr_size) in BiTbl.add arr x byte; byte) in Bv.create (Z.of_bits bits) (len lsl 3) | Layer { addr; store; over; _ } -> let addr = eval ~symbols ~memory t addr in let size = Bv.size_of addr in let offset = Bv.sub ptr addr in let miss i s = Chunk.of_term (Expr.load s Expr.LittleEndian (Expr.constant (Bv.add addr (Bv.create i size))) over) in let bytes = Chunk.to_term (Store.select miss offset len store) in let bytes = match dir with LittleEndian -> bytes | BigEndian -> bswap bytes in eval ~symbols ~memory t bytes end module BvSet = Set.Make (Expr) module BvMap = Map.Make (Expr)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>