package binsec
Semantic analysis of binary executables
Install
Dune Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
Maintainers
Sources
binsec-0.7.2.tbz
sha256=5e1d0f26a567df4abcbeb964b454cf8b2c8484194ff2d9639bdeb94d63edcb3b
sha512=a638c665407fde9aadbd57a7b9f84260db8f03c0cbf65722732d43dfc93122d801e31977e0ba7cd249b340262caf216bca746a3520d0e01d487a5baf6a6c77e6
doc/src/libformula/sse_symbolic.ml.html
Source file sse_symbolic.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2022 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Options open Types let byte_size = Natural.to_int Basic_types.Constants.bytesize let byteswap e = let rec loop e size e' = if size = 0 then e' else loop e (size - 8) (Formula.mk_bv_concat (Formula.mk_bv_extract { lo = size - 8; hi = size - 1 } e) e') in let size = Formula_utils.bv_size e in loop e (size - 8) (Formula.mk_bv_extract { lo = size - 8; hi = size - 1 } e) module S = Basic_types.String.Map module State (Solver : Smt_sig.Solver) (QS : QUERY_STATISTICS) : STATE = struct type t = { formula : Formula.formula; (* SMT2 formula *) vsymbols : Formula.bv_term S.t; (* collection of visible symbols *) vmemory : Formula.ax_term; (* visible memory *) fid : int; (* unique indice counter *) fvariables : Formula.bv_var list S.t; (* collection of free variables *) fmemory : Formula.ax_var; (* initial memory *) model : Smt_model.t; (* a model that satisfy constraints *) } (** Symbolic state *) let memory_name = "__memory" module Value = struct type t = Formula.bv_term let constant = Formula.mk_bv_cst let lookup (v : Dba.Var.t) t = try S.find v.name t.vsymbols with Not_found -> raise (Undef v) let read ~addr bytes (dir : Machine.endianness) t = let array = t.vmemory in let content = Formula.mk_select bytes array addr in let content = match dir with LittleEndian -> content | BigEndian -> byteswap content in (content, t) let select _ ~addr:_ _ _ _ = raise (Errors.not_yet_implemented "arrays") let ite cond then_smt else_smt = Formula.(mk_bv_ite (mk_bv_equal cond mk_bv_one) then_smt else_smt) let unary e (op : Dba.Unary_op.t) = match op with | Not -> Formula.mk_bv_not | UMinus -> Formula.mk_bv_neg | Sext n -> Formula.mk_bv_sign_extend (n - Dba.Expr.size_of e) | Uext n -> Formula.mk_bv_zero_extend (n - Dba.Expr.size_of e) | Restrict interval -> Formula.mk_bv_extract interval let as_bv bop e1 e2 = Formula.(mk_bv_ite (bop e1 e2) mk_bv_one mk_bv_zero) let rotate_right_const n = Formula.mk_bv_rotate_right n let rotate_left_const n = Formula.mk_bv_rotate_left n let rotate shift_func rev_shift_func const_rot_func value shift = let open Formula in match shift.bv_term_desc with | BvCst x -> let op = Bitvector.value_of x |> Z.to_int |> const_rot_func in op value | _ -> let part1 = shift_func value shift and shift_size = Formula_utils.bv_size shift and value_size = Formula_utils.bv_size value |> Z.of_int in let value_size = Bitvector.create value_size shift_size |> mk_bv_cst in let offset = mk_bv_sub value_size shift in let part2 = rev_shift_func value offset in mk_bv_or part1 part2 let rotate_right = rotate Formula.mk_bv_lshr Formula.mk_bv_shl rotate_right_const let rotate_left = rotate Formula.mk_bv_shl Formula.mk_bv_lshr rotate_left_const let binary (op : Dba.Binary_op.t) = match op with | Plus -> Formula.mk_bv_add | Minus -> Formula.mk_bv_sub | Mult -> Formula.mk_bv_mul | DivU -> Formula.mk_bv_udiv | DivS -> Formula.mk_bv_sdiv | ModU -> Formula.mk_bv_urem | ModS -> Formula.mk_bv_smod | Eq -> as_bv Formula.mk_bv_equal | Diff -> as_bv Formula.mk_bv_distinct | LeqU -> as_bv Formula.mk_bv_ule | LtU -> as_bv Formula.mk_bv_ult | GeqU -> as_bv Formula.mk_bv_uge | GtU -> as_bv Formula.mk_bv_ugt | LeqS -> as_bv Formula.mk_bv_sle | LtS -> as_bv Formula.mk_bv_slt | GeqS -> as_bv Formula.mk_bv_sge | GtS -> as_bv Formula.mk_bv_sgt | Xor -> Formula.mk_bv_xor | And -> Formula.mk_bv_and | Or -> Formula.mk_bv_or | Concat -> Formula.mk_bv_concat | LShift -> Formula.mk_bv_shl | RShiftU -> Formula.mk_bv_lshr | RShiftS -> Formula.mk_bv_ashr | LeftRotate -> rotate_left | RightRotate -> rotate_right let rec eval (e : Dba.Expr.t) state = match e with | Var { info = Symbol (_, (lazy bv)); _ } | Cst bv -> Formula.mk_bv_cst bv | Var v -> lookup v state | Load (bytes, dir, e, None) -> let smt_e = eval e state in fst (read ~addr:smt_e bytes dir state) | Load _ -> raise (Errors.not_yet_implemented "arrays") | Binary (bop, lop, rop) as e -> Logger.debug ~level:6 "Translating binary %a" Dba_printer.Ascii.pp_bl_term e; let l_smt_e = eval lop state in let r_smt_e = eval rop state in binary bop l_smt_e r_smt_e | Unary (uop, e) -> let v = eval e state in unary e uop v | Ite (c, then_e, else_e) -> let cond = eval c state in let then_smt = eval then_e state in let else_smt = eval else_e state in ite cond then_smt else_smt let unary_op (op : Term.unary Term.operator) = match op with | Not -> Formula.BvNot | Minus -> Formula.BvNeg | Sext size -> Formula.BvSignExtend size | Uext size -> Formula.BvZeroExtend size | Restrict it -> Formula.BvExtract it let unary op e = Formula.mk_bv_unop (unary_op op) e let binary_op (op : Term.binary Term.operator) = match op with | Plus -> Dba.Binary_op.Plus | Minus -> Dba.Binary_op.Minus | Mul -> Dba.Binary_op.Mult | Udiv -> Dba.Binary_op.DivU | Umod -> Dba.Binary_op.ModU | Sdiv -> Dba.Binary_op.DivS | Smod -> Dba.Binary_op.ModS | Or -> Dba.Binary_op.Or | And -> Dba.Binary_op.And | Xor -> Dba.Binary_op.Xor | Concat -> Dba.Binary_op.Concat | Lsl -> Dba.Binary_op.LShift | Lsr -> Dba.Binary_op.RShiftU | Asr -> Dba.Binary_op.RShiftS | Rol -> Dba.Binary_op.LeftRotate | Ror -> Dba.Binary_op.RightRotate | Eq -> Dba.Binary_op.Eq | Diff -> Dba.Binary_op.Diff | Ule -> Dba.Binary_op.LeqU | Ult -> Dba.Binary_op.LtU | Uge -> Dba.Binary_op.GeqU | Ugt -> Dba.Binary_op.GtU | Sle -> Dba.Binary_op.LeqS | Slt -> Dba.Binary_op.LtS | Sge -> Dba.Binary_op.GeqS | Sgt -> Dba.Binary_op.GtS let binary op e1 e2 = binary (binary_op op) e1 e2 end let empty () = let word_size = Kernel_options.Machine.word_size () in let fmemory = Formula.ax_var (memory_name ^ "_0") word_size byte_size in { formula = Formula.empty |> Formula.push_back_declare @@ Formula.mk_ax_decl fmemory []; vsymbols = S.empty; vmemory = Formula.mk_ax_var fmemory; fid = 1; fvariables = S.empty; fmemory; model = Smt_model.empty; } let do_optimization ?(keep = Formula.VarSet.empty) fm = let level = 3 in if Formula.VarSet.is_empty keep then Logger.debug ~level "Optimize" else Logger.debug ~level "@[<v 2>Optimize but keep intact these variables:@ %a@]" Formula_pp.pp_varset keep; Formula_transformation.optimize_from_options ?is_controlled:None ~keep fm let fresh ({ name; size; _ } : Dba.Var.t) state = let v = Formula.bv_var (Printf.sprintf "%s_%d" name state.fid) size in let fid = state.fid + 1 in let h = match S.find name state.fvariables with | exception Not_found -> [ v ] | h -> v :: h in let fvariables = S.add name h state.fvariables in let vsymbols = S.add name (Formula.mk_bv_var v) state.vsymbols in let formula = state.formula |> Formula.push_front_declare @@ Formula.mk_bv_decl v [] in { state with formula; vsymbols; fid; fvariables } let alloc ~array:_ _ = raise (Errors.not_yet_implemented "arrays") let assign name value state = let value_size = Formula_utils.bv_size value in let var = Formula.bv_var (Printf.sprintf "%s_%d" name state.fid) value_size in let fid = state.fid + 1 in let vsymbols = S.add name (Formula.mk_bv_var var) state.vsymbols in let formula = state.formula |> Formula.push_front_define @@ Formula.mk_bv_def var [] value in { state with formula; vsymbols; fid } let write ~addr value (dir : Machine.endianness) state = let value = match dir with LittleEndian -> value | BigEndian -> byteswap value in let addr_size = Formula_utils.bv_size addr and write_size = Formula_utils.bv_size value / 8 in let layer = Formula.ax_var (Printf.sprintf "%s_%d" memory_name state.fid) addr_size byte_size in let fid = state.fid + 1 in let vmemory = Formula.mk_ax_var layer in let formula = state.formula |> Formula.push_front_define @@ Formula.mk_ax_def layer [] @@ Formula.mk_store write_size state.vmemory addr value in { state with formula; vmemory; fid } let store _ ~addr:_ _ _ _ = raise (Errors.not_yet_implemented "arrays") let memcpy ~addr size img state = let reader = Lreader.of_zero_extend_buffer img in let chunk = Lreader.Read.read reader size in let addr_size = Bitvector.size_of addr in let layer = Formula.ax_var (Printf.sprintf "%s_%d" memory_name state.fid) addr_size byte_size in let fid = state.fid + 1 in let vmemory = Formula.mk_ax_var layer in let formula = state.formula |> Formula.push_front_define @@ Formula.mk_ax_def layer [] @@ Formula.mk_store size state.vmemory (Formula.mk_bv_cst addr) (Formula.mk_bv_cst chunk) in { state with formula; vmemory; fid } module Solver = struct let extract_model session vars memory = let model = Smt_model.create () in S.iter (fun _ -> List.iter (fun var -> Smt_model.add_var model (Formula_utils.bv_var_name var) (Solver.get_bv_value session (Formula.mk_bv_var var)))) vars; Array.iter (fun (addr, value) -> Smt_model.add_memcell model addr value) (Solver.get_ax_values session (Formula.mk_ax_var memory)); model let with_solver formula f = QS.Solver.start_timer (); let session = Solver.open_session () in Formula.iter_forward (Solver.put session) formula; let r = f session in Solver.close_session session; QS.Solver.stop_timer (); r let check_satistifiability formula vars memory = with_solver formula (fun session -> match Solver.check_sat session with | Formula.SAT -> QS.Solver.incr_sat (); Logger.debug ~level:4 "SMT query resulted in SAT"; Some (extract_model session vars memory) | Formula.UNSAT -> QS.Solver.incr_unsat (); Logger.debug ~level:4 "SMT query resulted in UNSAT"; None | Formula.UNKNOWN | Formula.TIMEOUT -> QS.Solver.incr_err (); Logger.warning ~level:0 "SMT query resulted in UNKNOWN"; raise Unknown) let enumerate e ?(n = 1 lsl Formula_utils.bv_size e) formula vars memory = with_solver formula (fun session -> let rec loop e' n enum = if n = 0 then enum else match Solver.check_sat session with | Formula.SAT -> QS.Solver.incr_sat (); let bv = Solver.get_bv_value session e' in Logger.debug ~level:5 "Solver returned %a ; %d solutions still to be found" Bitvector.pp_hex bv (n - 1); let model = extract_model session vars memory in Solver.put session @@ Formula.mk_assert @@ Formula.mk_bv_distinct e (Formula.mk_bv_cst bv); loop e' (n - 1) ((bv, model) :: enum) | Formula.UNSAT -> QS.Solver.incr_unsat (); Logger.debug ~level:4 "Solver returned UNSAT"; enum | Formula.UNKNOWN | Formula.TIMEOUT -> QS.Solver.incr_err (); Logger.warning ~level:0 "SMT query resulted in UNKNOWN"; raise Unknown in loop e n []) end let get_value e state = let size = Formula_utils.bv_size e in let var = Formula.bv_var (Printf.sprintf "__value_%d" state.fid) size in let formula = state.formula |> Formula.push_front_define @@ Formula.mk_bv_def var [] e in let keep = Formula.VarSet.singleton (Formula.BvVar var) in let formula = do_optimization ~keep formula in match Formula.peek_front formula with | Some { entry_desc = Formula.Define { def_desc = Formula.BvDef (v, _, { bv_term_desc = Formula.BvCst bv; _ }); _; }; _; } -> assert (v = var); QS.Preprocess.incr_const (); Logger.debug ~level:4 "Value of %a resolved to constant %a" Formula_pp.pp_bv_term e Bitvector.pp bv; bv | _ -> raise Non_unique let keep state = S.fold (fun _ e k -> match e with | { Formula.bv_term_desc = Formula.BvFun (v, []); _ } -> Formula.VarSet.add (Formula.BvVar v) k | _ -> assert false) state.vsymbols @@ S.fold (fun _ l k -> List.fold_left (fun k v -> Formula.VarSet.add (Formula.BvVar v) k) k l) state.fvariables @@ match state.vmemory with | { Formula.ax_term_desc = Formula.AxFun (v, []); _ } -> Formula.VarSet.add (Formula.AxVar v) @@ Formula.VarSet.singleton (Formula.AxVar state.fmemory) | _ -> assert false let assume e state = let e = Formula.mk_bv_equal e Formula.mk_bv_one in let var = Formula.bl_var (Printf.sprintf "__assume_%d" state.fid) in let fid = state.fid + 1 in let formula = state.formula |> Formula.push_front_define @@ Formula.mk_bl_def var [] e in let keep = Formula.VarSet.add (Formula.BlVar var) @@ keep state in let formula = do_optimization ~keep formula in match Formula.peek_front formula with | Some { entry_desc = Formula.Define { def_desc = Formula.BlDef (v, _, { bl_term_desc = Formula.BlTrue; _ }); _; }; _; } -> assert (v = var); QS.Preprocess.incr_sat (); Some { state with formula; fid } | Some { entry_desc = Formula.Define { def_desc = Formula.BlDef (v, _, { bl_term_desc = Formula.BlFalse; _ }); _; }; _; } -> assert (v = var); QS.Preprocess.incr_unsat (); None | _ -> ( let formula = Formula.push_front_assert (Formula.mk_bl_var var) formula in match Solver.check_satistifiability formula state.fvariables state.fmemory with | Some model -> Some { state with formula; fid; model } | None -> None) let test e state = let e = Formula.mk_bv_equal e Formula.mk_bv_one in let var = Formula.bl_var (Printf.sprintf "__assume_%d" state.fid) in let fid = state.fid + 1 in let formula = state.formula |> Formula.push_front_define @@ Formula.mk_bl_def var [] e in let keep = Formula.VarSet.add (Formula.BlVar var) @@ keep state in let formula = do_optimization ~keep formula in match Formula.peek_front formula with | Some { entry_desc = Formula.Define { def_desc = Formula.BlDef (v, _, { bl_term_desc = Formula.BlTrue; _ }); _; }; _; } -> assert (v = var); QS.Preprocess.incr_sat (); True { state with formula; fid } | Some { entry_desc = Formula.Define { def_desc = Formula.BlDef (v, _, { bl_term_desc = Formula.BlFalse; _ }); _; }; _; } -> assert (v = var); QS.Preprocess.incr_unsat (); False { state with formula; fid } | _ -> ( let formula = Formula.push_front_assert (Formula.mk_bl_var var) formula and formula' = Formula.push_front_assert (Formula.mk_bl_not (Formula.mk_bl_var var)) formula in match ( Solver.check_satistifiability formula state.fvariables state.fmemory, Solver.check_satistifiability formula' state.fvariables state.fmemory ) with | Some model, Some model' -> Both { t = { state with formula; fid; model }; f = { state with formula = formula'; fid; model = model' }; } | Some model, None -> True { state with formula; fid; model } | None, Some model' -> False { state with formula = formula'; fid; model = model' } | None, None -> raise Unknown) let enumerate e ?n ?(except = []) state = let size = Formula_utils.bv_size e in let var = Formula.bv_var (Printf.sprintf "__enum_%d" state.fid) size in let fid = state.fid + 1 in let formula = state.formula |> Formula.push_front_define @@ Formula.mk_bv_def var [] e in let keep = Formula.VarSet.add (Formula.BvVar var) @@ keep state in let formula = do_optimization ~keep formula in match Formula.peek_front formula with | Some { entry_desc = Formula.Define { def_desc = Formula.BvDef (v, _, { bv_term_desc = Formula.BvCst bv; _ }); _; }; _; } -> assert (v = var); if Bitvector.is_one bv then QS.Preprocess.incr_sat () else if Bitvector.is_zero bv then QS.Preprocess.incr_unsat () else QS.Preprocess.incr_const (); Logger.debug ~level:4 "Enumeration of %a resolved to constant %a" Formula_pp.pp_bv_term e Bitvector.pp bv; [ (bv, { state with formula; fid }) ] | _ -> let evar = Formula.mk_bv_var var in let formula = List.fold_left (fun f bv -> Formula.push_front_assert (Formula.mk_bv_distinct evar (Formula.mk_bv_cst bv)) f) formula except in List.map (fun (bv, model) -> let formula = formula |> Formula.push_front_assert @@ Formula.mk_bv_equal evar (Formula.mk_bv_cst bv) in (bv, { state with formula; fid; model })) @@ Solver.enumerate evar ?n formula state.fvariables state.fmemory let merge _ _ = raise Non_mergeable let pp ppf state = Smt_model.pp ppf state.model let pp_smt slice ppf state = match slice with | None -> Formula_pp.pp_formula ppf state.formula | Some l -> let keep, state = List.fold_left (fun (keep, state) (e, n) -> let state = assign n (Value.eval e state) state in match Formula.peek_front state.formula with | Some { entry_desc = Formula.Define { def_desc = Formula.BvDef (v, _, _); _ }; _; } -> (Formula.VarSet.add (Formula.BvVar v) keep, state) | _ -> assert false) (Formula.VarSet.empty, state) l in Formula_pp.pp_formula ppf (do_optimization ~keep state.formula) let as_ascii ~name state = let buf = Buffer.create 16 in List.iter (fun var -> let name = Formula_utils.bv_var_name var in match Smt_model.find_variable state.model name with | None -> Buffer.add_char buf '.' | Some bv -> assert (Bitvector.size_of bv mod byte_size = 0); let rec iter bv = let size = Bitvector.size_of bv in if size = byte_size then Buffer.add_char buf (Bitvector.to_char bv) else let byte = Bitvector.extract bv { Interval.lo = 0; hi = 7 } in Buffer.add_char buf (Bitvector.to_char byte); iter (Bitvector.extract bv { Interval.lo = 8; hi = size - 1 }) in iter bv) @@ List.rev @@ S.find name state.fvariables; Buffer.contents buf let as_c_string ~name:_ _ = raise (Errors.not_yet_implemented "arrays") let assign ({ name; _ } : Dba.Var.t) state = assign name state let to_formula { formula; _ } = formula end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>