package binsec
Semantic analysis of binary executables
Install
Dune Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
Maintainers
Sources
binsec-0.7.2.tbz
sha256=5e1d0f26a567df4abcbeb964b454cf8b2c8484194ff2d9639bdeb94d63edcb3b
sha512=a638c665407fde9aadbd57a7b9f84260db8f03c0cbf65722732d43dfc93122d801e31977e0ba7cd249b340262caf216bca746a3520d0e01d487a5baf6a6c77e6
doc/src/binsec.sse/fiber.ml.html
Source file fiber.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2022 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Types type 'a t = | Hook : { addr : Virtual_address.t; info : string; mutable succ : [ `All ] t; } -> [< `Label | `All ] t | Exec : { addr : Virtual_address.t; info : string; n : int; others : (Virtual_address.t * string) list; mutable succ : [ `All ] t; } -> [< `Label | `All ] t | Assign : { var : Var.t; rval : Expr.t; mutable succ : [ `All ] t; } -> [< `All ] t | Clobber : { var : Var.t; mutable succ : [ `All ] t } -> [< `All ] t | Load : { var : Var.t; base : A.t; dir : Machine.endianness; addr : Expr.t; mutable succ : [ `All ] t; } -> [< `All ] t | Store : { base : A.t; dir : Machine.endianness; addr : Expr.t; rval : Expr.t; mutable succ : [ `All ] t; } -> [< `All ] t | Symbolize : { var : Var.t; mutable succ : [ `All ] t } -> [< `All ] t | Assume : { test : Expr.t; mutable succ : [ `All ] t; } -> [< `Assume | `All ] t | Assert : { test : Expr.t; mutable succ : [ `All ] t; } -> [< `Assert | `All ] t | Branch : { test : Expr.t; mutable taken : [ `All ] t; mutable fallthrough : [ `All ] t; } -> [< `Branch | `All ] t | Goto : { addr : Virtual_address.t; mutable preds : [ `All ] t list; } -> [< `All ] t | Jump : Expr.t -> [< `Jump | `All ] t | Halt : [< `All ] t | Probe : { kind : Probe.t; mutable succ : [ `All ] t; } -> [< `Probe | `All ] t | Cut : [< `All ] t | Die : string -> [< `All ] t let addr (t : [ `Label ] t) = match t with Hook { addr; _ } | Exec { addr; _ } -> addr let extract_load = let rec fold m (e : Expr.t) = match e with | Cst _ -> (m, e) | Var _ -> (m, e) | Load (sz, dir, addr, base) -> let m', addr' = fold m addr in let k = (sz, dir, addr', base) in let v = try List.assoc k m' with Not_found -> Dba.Var.( create (Printf.sprintf "$$%d" (List.length m')) ~bitsize:(Size.Bit.create (8 * sz)) ~tag:Tag.Temp) in ((k, v) :: m', Expr.v v) | Unary (o, x) -> let m', x' = fold m x in let e' = if x == x' then e else Expr.unary o x' in (m', e') | Binary (o, x, y) -> let m', x' = fold m x in let m', y' = fold m' y in let e' = if x == x' && y == y' then e else Expr.binary o x' y' in (m', e') | Ite (c, x, y) -> let m', c' = fold m c in let m', x' = fold m' x in let m', y' = fold m' y in let e' = if c == c' && x == x' && y == y' then e else Expr.ite c' x' y' in (m', e') in fold let define_load m succ = List.fold_left (fun succ ((_, dir, addr, base), var) -> Load { var; base; dir; addr; succ }) succ m let assign (loc : Dba.LValue.t) (rval : Dba.Expr.t) succ = match (loc, rval) with | Var var, Load (_, dir, addr, base) -> let m, addr = extract_load [] addr in define_load m (Load { var; base; dir; addr; succ }) | Var var, _ -> let m, rval = extract_load [] rval in define_load m (Assign { var; rval; succ }) | Restrict (var, { lo; hi }), _ -> let m, rval = extract_load [] rval in let rval = Dba_utils.Expr.complement rval ~hi ~lo var in define_load m (Assign { var; rval; succ }) | Store (_, dir, addr, base), _ -> let m, addr = extract_load [] addr in let m, rval = extract_load m rval in define_load m (Store { base; dir; addr; rval; succ }) let entropy = Printf.sprintf "%%entropy%%%d" let nondet (loc : Dba.LValue.t) succ = match loc with | Var var -> Symbolize { var; succ } | Restrict (var, { lo; hi }) -> let size' = hi - lo + 1 in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in let rval = Dba_utils.Expr.complement (Expr.v var') ~lo ~hi var in Symbolize { var = var'; succ = Assign { var; rval; succ } } | Store (bytes, dir, addr, base) -> let size' = 8 * bytes in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in let rval = Expr.v var' in Symbolize { var = var'; succ = Store { base; dir; addr; rval; succ } } let of_dhunk : Dhunk.t -> _ t = let rec lookup d a i = match Array.get a i with | Halt -> ( match Dhunk.inst_exn d i with | SJump (JInner i, _) -> lookup d a i | _ -> Halt) | t -> t in let rec forward_load t = match t with | Hook _ | Exec _ | Assign _ | Clobber _ | Load { succ = Halt; _ } | Store _ | Symbolize _ | Assume _ | Assert _ | Branch _ | Probe _ | Goto _ | Jump _ | Cut | Halt | Die _ -> t | Load { succ; _ } -> forward_load succ in fun d -> let d = Dhunk.optimize ~inplace:true d in let n = Dhunk.length d in let a = Array.make n Halt in for i = 0 to n - 1 do Array.set a i (match Dhunk.inst_exn d i with | Assign (loc, value, _) -> assign loc value Halt | Undef (Var var, _) -> Clobber { var; succ = Halt } | Nondet (loc, _) -> nondet loc Halt | Assume (test, _) -> let m, test = extract_load [] test in define_load m (Assume { test; succ = Halt }) | Assert (test, _) -> let m, test = extract_load [] test in define_load m (Assert { test; succ = Halt }) | If (test, JInner _, _) -> let m, test = extract_load [] test in define_load m (Branch { test; taken = Halt; fallthrough = Halt }) | If (test, JOuter { base; _ }, _) -> let m, test = extract_load [] test in define_load m (Branch { test; taken = Goto { addr = base; preds = [] }; fallthrough = Halt; }) | DJump (target, _) -> let m, target = extract_load [] target in define_load m (Jump target) | SJump (JOuter { base; _ }, _) -> Goto { addr = base; preds = [] } | SJump (JInner _, _) -> Halt | Stop (None | Some OK) -> Halt | Stop (Some (Undecoded msg | Unsupported msg)) -> Die msg | (Undef _ | Stop (Some KO)) as ins -> Options.Logger.fatal "unexpected instruction kind %a" Dba_printer.Ascii.pp_instruction ins) done; for i = 0 to n - 1 do match (Dhunk.inst_exn d i, forward_load (Array.get a i)) with | Assign (Var _, _, i'), Load t -> t.succ <- lookup d a i' | Assign ((Var _ | Restrict _), _, i'), Assign t -> t.succ <- lookup d a i' | Assign (Store _, _, i'), Store t -> t.succ <- lookup d a i' | Undef (_, i'), Clobber t -> t.succ <- lookup d a i' | Nondet (Var _, i'), Symbolize t -> t.succ <- lookup d a i' | Nondet (Restrict _, i'), Symbolize { succ = Assign t; _ } -> t.succ <- lookup d a i' | Nondet (Store _, i'), Symbolize { succ = Store t; _ } -> t.succ <- lookup d a i' | Assume (_, i'), Assume t -> t.succ <- lookup d a i' | Assert (_, i'), Assert t -> t.succ <- lookup d a i' | If (_, JInner i', f'), Branch t -> t.taken <- lookup d a i'; t.fallthrough <- lookup d a f' | If (_, JOuter _, i'), Branch t -> t.fallthrough <- lookup d a i' | SJump (JOuter _, _), Goto t -> t.preds <- List.map (fun i -> forward_load (Array.get a i)) (Dhunk.pred d i) | DJump _, _ | SJump _, _ | Stop _, _ -> () | _ -> assert false done; lookup d a 0 let abort = Die "invalid fallthrough instruction" let relink ?(taken = false) (t : [ `All ] t) (succ : [ `All ] t) = (match succ with Goto g when t <> Halt -> g.preds <- t :: g.preds | _ -> ()); match t with | Hook t -> t.succ <- succ | Exec t -> t.succ <- succ | Assign t -> t.succ <- succ | Clobber t -> t.succ <- succ | Load t -> t.succ <- succ | Store t -> t.succ <- succ | Symbolize t -> t.succ <- succ | Assume t -> t.succ <- succ | Assert t -> t.succ <- succ | Branch t when taken -> t.taken <- succ | Branch t -> t.fallthrough <- succ | Probe t -> t.succ <- succ | Goto _ | Jump _ | Cut | Halt | Die _ -> () let rec iter continue entries reloc passthrough labels pred (stmts : Script.Instr.t list) = match stmts with | [] -> List.iter (fun name -> S.Htbl.add entries name continue) labels; relink pred continue; reloc | Label name :: stmts -> iter continue entries reloc passthrough (name :: labels) pred stmts | Assign (Var var, Load (_, dir, addr, base)) :: stmts -> let m, addr = extract_load [] addr in let last = Load { var; base; dir; addr; succ = Halt } in let step = define_load m last in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries reloc passthrough [] last stmts | Assign (Var var, rval) :: stmts -> let m, rval = extract_load [] rval in let last = Assign { var; rval; succ = Halt } in let step = define_load m last in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries reloc passthrough [] last stmts | Assign (Restrict (var, { hi; lo }), rval) :: stmts -> let m, rval = extract_load [] rval in let rval = Dba_utils.Expr.complement rval ~hi ~lo var in let last = Assign { var; rval; succ = Halt } in let step = define_load m last in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries reloc passthrough [] last stmts | Assign (Store (_, dir, addr, base), rval) :: stmts -> let m, addr = extract_load [] addr in let m, rval = extract_load m rval in let last = Store { base; dir; addr; rval; succ = Halt } in let step = define_load m last in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries reloc passthrough [] last stmts | Nondet (Var var) :: stmts -> let step = Symbolize { var; succ = Halt } in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries reloc passthrough [] step stmts | Nondet (Restrict (var, { hi; lo })) :: stmts -> let size' = hi - lo + 1 in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in let rval = Dba_utils.Expr.complement (Expr.v var') ~hi ~lo var in let succ = Assign { var; rval; succ = Halt } in let step = Symbolize { var = var'; succ } in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries reloc passthrough [] succ stmts | Nondet (Store (len, dir, addr, base)) :: stmts -> let m, addr = extract_load [] addr in let size' = 8 * len in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in let succ = Store { base; dir; addr; rval = Expr.v var'; succ = Halt } in let step = define_load m (Symbolize { var = var'; succ }) in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries reloc passthrough [] succ stmts | Undef (Var var) :: stmts -> let step = Clobber { var; succ = Halt } in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries reloc passthrough [] step stmts | Undef _ :: _ -> Options.Logger.fatal "only variables can be undefined" | Assume test :: stmts -> let m, test = extract_load [] test in let last = Assume { test; succ = Halt } in let step = define_load m last in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries reloc passthrough [] last stmts | Assert test :: stmts -> let m, test = extract_load [] test in let last = Assert { test; succ = Halt } in let step = define_load m last in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries reloc passthrough [] last stmts | It (test, target) :: stmts -> let m, test = extract_load [] test in let branch = Branch { test; taken = Halt; fallthrough = Halt } in let step = define_load m branch in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries ((branch, target, true) :: reloc) passthrough [] branch stmts | Goto target :: stmts -> List.iter (fun name -> S.Htbl.add passthrough name target) labels; iter continue entries ((pred, target, false) :: reloc) passthrough [] Halt stmts | Jump (Cst bv) :: stmts -> let goto = Goto { addr = Virtual_address.of_bitvector bv; preds = [] } in List.iter (fun name -> S.Htbl.add entries name goto) labels; relink pred goto; iter continue entries reloc passthrough [] goto stmts | Jump target :: stmts -> let m, target = extract_load [] target in let jump = Jump target in let step = define_load m jump in List.iter (fun name -> S.Htbl.add entries name step) labels; relink pred step; iter continue entries reloc passthrough [] jump stmts | Halt :: stmts -> List.iter (fun name -> S.Htbl.add entries name Halt) labels; (* not needed *) relink pred Halt; iter continue entries reloc passthrough [] Halt stmts let rec lookup entries passthrough target = try S.Htbl.find entries target with Not_found -> ( match S.Htbl.find passthrough target with | exception Not_found -> Options.Logger.fatal "label %S is not defined" target | target -> lookup entries passthrough target) let of_script ?(continue = abort) stmts = let entries = S.Htbl.create 10 and passthrough = S.Htbl.create 10 in let reloc = iter continue entries [] passthrough [ "%start%" ] Halt stmts in List.iter (fun (pred, target, taken) -> relink ~taken pred (lookup entries passthrough target)) reloc; S.Htbl.find entries "%start%" let mk_cut (addr : Virtual_address.t) (saddr : string) (guard : Expr.t option) succ = match guard with | None -> Hook { addr; info = Printf.sprintf "cut at %s" saddr; succ = Cut } | Some guard -> let m, test = extract_load [] guard in Hook { addr; info = Format.asprintf "cut at %s if %a" saddr Dba_printer.Ascii.pp_bl_term guard; succ = define_load m (Branch { test; taken = Cut; fallthrough = succ }); } let mk_assume (addr : Virtual_address.t) (saddr : string) (guard : Expr.t) succ = let m, test = extract_load [] guard in Hook { addr; info = Format.asprintf "at %s assume %a" saddr Dba_printer.Ascii.pp_bl_term guard; succ = define_load m (Assume { test; succ }); } let mk_assert (addr : Virtual_address.t) (saddr : string) (guard : Expr.t) succ = let m, test = extract_load [] guard in Hook { addr; info = Format.asprintf "at %s assert %a" saddr Dba_printer.Ascii.pp_bl_term guard; succ = define_load m (Assert { test; succ }); } let mk_reach (addr : Virtual_address.t) (saddr : string) id (guard : Expr.t option) n rev_actions succ = let info, guard = match guard with | None -> (Printf.sprintf "reach %s" saddr, Expr.one) | Some test -> ( Format.asprintf "reach %s such that %a" saddr Dba_printer.Ascii.pp_bl_term test, test ) in Hook { addr; info; succ = Probe { kind = Reach { id; n; guard; actions = List.rev rev_actions }; succ; }; } let mk_enumerate (addr : Virtual_address.t) (saddr : string) id format (expr : Expr.t) n succ = Hook { addr; info = Format.asprintf "at %s enumerate %a" saddr Dba_printer.Ascii.pp_bl_term expr; succ = Probe { kind = Enumerate { enum = expr; id; format; n; k = 0; values = [] }; succ; }; }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>