package binsec
Semantic analysis of binary executables
Install
Dune Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
Maintainers
Sources
binsec-0.6.0.tbz
sha256=e9101e68d317c837d5cff9608c6fba2127dd31ef6373b9b90806780c1d80bb52
sha512=c01af277239b8cc84fb904c301897f7d2388a8c850c7cb6a53acb8a4f8d51115c8a595c5517843d076421a76f4b2becb16e722b4c90f19a8fa208cce5f3ba274
doc/src/binsec.sse/sse_types.ml.html
Source file sse_types.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2022 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Format exception Unknown type 'a test = True of 'a | False of 'a | Both of { t : 'a; f : 'a } module type STATE = sig type t (** Symbolic state *) val empty : unit -> t val assume : Dba.Expr.t -> t -> t option val test : Dba.Expr.t -> t -> t test val split_on : Dba.Expr.t -> ?n:int -> ?except:Bitvector.t list -> t -> (Bitvector.t * t) list val fresh : string -> int -> t -> t val assign : string -> Dba.Expr.t -> t -> t val write : addr:Dba.Expr.t -> Dba.Expr.t -> Machine.endianness -> t -> t val memcpy : addr:Bitvector.t -> int -> Loader_buf.t -> t -> t val pp : Format.formatter -> t -> unit val pp_smt : ?slice:(Dba.Expr.t * string) list -> Format.formatter -> t -> unit val as_ascii : string -> t -> string end module type EXPLORATION_STATISTICS = sig val get_paths : unit -> int val get_completed_paths : unit -> int val get_unknown_paths : unit -> int val get_total_asserts : unit -> int val get_failed_asserts : unit -> int val get_branches : unit -> int val get_max_depth : unit -> int val get_instructions : unit -> int val get_unique_insts : unit -> int val get_time : unit -> float end module type QUERY_STATISTICS = sig module Preprocess : sig val get_sat : unit -> int val get_unsat : unit -> int val get_const : unit -> int val incr_sat : unit -> unit val incr_unsat : unit -> unit val incr_const : unit -> unit val pp : Format.formatter -> unit -> unit val to_toml : unit -> Toml.Types.table end module Solver : sig val get_sat : unit -> int val get_unsat : unit -> int val get_err : unit -> int val get_time : unit -> float val incr_sat : unit -> unit val incr_unsat : unit -> unit val incr_err : unit -> unit val start_timer : unit -> unit val stop_timer : unit -> unit val pp : Format.formatter -> unit -> unit val to_toml : unit -> Toml.Types.table end end module type STATE_FACTORY = functor (QS : QUERY_STATISTICS) -> STATE module Pragma = struct type t = | Start_from of Dba.Expr.t * Dhunk.t | Start_from_core of Dhunk.t | Load_sections of string list | Reach_all end module Script = struct type t = | Init of Parse_helpers.Initialization.t | Goal of Directive.t | Stub of Dba.Expr.t list * Dhunk.t | Pragma of Pragma.t end module C = struct include Instr_cfg.Make (struct include Basic_types.Int let hash i = i let equal = ( == ) end) end module Path_state (S : STATE) = struct type t = { id : int; (* Unique identifier for the path *) depth : int; (* Current depth of traversal *) solver_calls : int; path : Virtual_address.t list; (* Sequence of virtual addresses for this path *) symbolic_state : S.t; (* Current symbolic state *) instruction : Instruction.t; (* Current instruction *) block_index : int; (* Current index into DBA block of current instruction *) next_addr : Virtual_address.t option; (* Next address to decode *) (* How many times we can pass at this address before cut *) address_counters : Sse_options.Address_counter.t Virtual_address.Map.t; } let gen_id = ref (-1) let id st = st.id let depth st = st.depth let symbolic_state st = st.symbolic_state let block_index st = st.block_index let inst ps = ps.instruction let next_address ps = ps.next_addr let counter vaddr st = match Virtual_address.Map.find vaddr st.address_counters with | c -> Some c | exception Not_found -> None let set_counter vaddr c st = { st with address_counters = Virtual_address.Map.add vaddr c st.address_counters; } let paths_created () = !gen_id let solver_calls p = p.solver_calls let incr_solver_calls p = { p with solver_calls = p.solver_calls + 1 } let reset_solver_calls p = { p with solver_calls = 0 } let dba_instruction st = let block = st.instruction.Instruction.dba_block in Dhunk.inst block st.block_index |> Utils.unsafe_get_opt let set_block_index block_index st = { st with block_index } let set_instruction instruction st = { st with block_index = 0; instruction; depth = st.depth + 1; next_addr = None; path = Instruction.address instruction :: st.path; } let set_next_address addr st = { st with next_addr = Some addr } let set_symbolic_state symbolic_state st = { st with symbolic_state } let set_address_counters address_counters st = { st with address_counters } let virtual_address st = let open Instruction in st.instruction.address let location st = let caddress = virtual_address st |> Dba_types.Caddress.of_virtual_address in Dba_types.Caddress.reid caddress st.block_index let current_statement st = dba_instruction st |> Dba_types.Statement.create (location st) let pp_loc ppf st = let dba_instruction = dba_instruction st in let vaddress = virtual_address st in fprintf ppf "@[<hov>(%a, %d)@ :@ @[%a@]@]" Virtual_address.pp vaddress st.block_index Dba_printer.Ascii.pp_instruction dba_instruction let pp_path ppf ps = Format.pp_open_vbox ppf 0; List.iter (fun v -> Virtual_address.pp ppf v; Format.pp_print_space ppf ()) (List.rev ps.path); Format.pp_close_box ppf () let is_depth_ok ps = let max_depth = Sse_options.MaxDepth.get () in ps.depth < max_depth (* One might elements from the CFG here *) let create ?(depth = 0) ?(address_counters = Virtual_address.Map.empty) ?(block_index = 0) symbolic_state instruction = assert ( block_index >= 0 && block_index <= Dhunk.length instruction.Instruction.dba_block); incr gen_id; { id = !gen_id; address_counters; depth; path = []; block_index; symbolic_state; instruction; next_addr = None; solver_calls = 0 (* At path creation we have never called a solver *); } let branch p = incr gen_id; { p with id = !gen_id } end (* Both the stack and the queue below are functional implementations of these data structures *) module type WORKLIST = sig type elt type t val push : elt -> t -> t val pop : t -> elt * t val singleton : elt -> t val length : t -> int val is_empty : t -> bool val empty : t end module type WORKLIST_FACTORY = functor (E : Sigs.ANY) -> WORKLIST with type elt := E.t module Dfs (E : Sigs.ANY) : WORKLIST with type elt := E.t = struct type t = E.t list let empty = [] let is_empty = function [] -> true | _ -> false let push e w = e :: w let singleton e = [ e ] let pop = function e :: w -> (e, w) | [] -> raise Not_found let length = List.length end module Bfs (E : Sigs.ANY) : WORKLIST with type elt := E.t = struct type t = E.t Sequence.t let length = Sequence.length let is_empty q = Sequence.length q = 0 let empty = Sequence.empty let push p q = Sequence.push_back p q let pop q = match Sequence.peek_front q with | None -> raise Not_found | Some v -> ( match Sequence.pop_front q with | None -> assert false | Some seq -> (v, seq)) let singleton p = push p empty end module Nurs (E : Sigs.ANY) : WORKLIST with type elt := E.t = struct (* This is actually a fairly classical heap. The priority added to the date is just generated at random. *) module T = struct type t = { priority : int; state : E.t } let compare t1 t2 = compare t1.priority t2.priority let create ~priority ~state = { priority; state } end module H = Worklist.Make (T) type t = H.t let gen_priority () = Utils.random_max_int () let length = H.length let is_empty = H.is_empty let empty = H.empty let push p h = let priority = gen_priority () in H.add (T.create ~priority ~state:p) h let pop h = let e, h' = H.pop h in (e.T.state, h') let singleton p = push p empty end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>