package bignum
Core-flavoured wrapper around zarith's arbitrary-precision rationals
Install
Dune Dependency
Authors
Maintainers
Sources
bignum-v0.15.0.tar.gz
sha256=c3056514f93f1fa98fa54136fb119e8a7d623eafd349d21dd8dc979428a379b1
doc/src/bignum.bigint/bigint.ml.html
Source file bigint.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
open Core module Z = Zarith.Z type t = Z.t [@@deriving typerep ~abstract] let module_name = "Bigint" let invariant (_ : t) = () module Stringable_t = struct type nonrec t = t let to_string = Z.to_string let of_string_base str ~name ~of_string = try of_string str with | _ -> failwithf "%s.%s: invalid argument %S" name module_name str () ;; let of_string str = of_string_base str ~name:"of_string" ~of_string:Z.of_string end module Stable = struct module V1 = struct module Bin_rep = struct type t = | Zero | Pos of string | Neg of string [@@deriving bin_io] end module Bin_rep_conversion = struct type nonrec t = t let to_binable t = let s = Z.sign t in if s > 0 then Bin_rep.Pos (Z.to_bits t) else if s < 0 then Bin_rep.Neg (Z.to_bits t) else Bin_rep.Zero ;; let of_binable = function | Bin_rep.Zero -> Z.zero | Bin_rep.Pos bits -> Z.of_bits bits | Bin_rep.Neg bits -> Z.of_bits bits |> Z.neg ;; end type nonrec t = t let compare = Z.compare include Sexpable.Stable.Of_stringable.V1 (Stringable_t) include Binable.Stable.Of_binable.V1 [@alert "-legacy"] (Bin_rep) (Bin_rep_conversion) end module V2 = struct type nonrec t = t let compare = Z.compare include Sexpable.Stable.Of_stringable.V1 (Stringable_t) let compute_size_in_bytes x = let numbits = Z.numbits x in Int.round_up ~to_multiple_of:8 numbits / 8 ;; let compute_tag ~size_in_bytes ~negative = let open Int63 in let sign_bit = if negative then one else zero in (* Can't overflow: size <= String.length bits < 2 * max_string_length < max_int63 *) shift_left (of_int size_in_bytes) 1 + sign_bit ;; let bin_size_t : t Bin_prot.Size.sizer = fun x -> let size_in_bytes = compute_size_in_bytes x in if size_in_bytes = 0 then Int63.bin_size_t Int63.zero else ( let negative = Z.sign x = -1 in let tag = compute_tag ~size_in_bytes ~negative in Int63.bin_size_t tag + size_in_bytes) ;; let bin_write_t : t Bin_prot.Write.writer = fun buf ~pos x -> let size_in_bytes = compute_size_in_bytes x in if size_in_bytes = 0 then Int63.bin_write_t buf ~pos Int63.zero else ( let bits = Z.to_bits x in let negative = Z.sign x = -1 in let tag = compute_tag ~size_in_bytes ~negative in let pos = Int63.bin_write_t buf ~pos tag in Bin_prot.Common.blit_string_buf bits ~dst_pos:pos buf ~len:size_in_bytes; pos + size_in_bytes) ;; let bin_read_t : t Bin_prot.Read.reader = fun buf ~pos_ref -> let tag = Core.Int63.bin_read_t buf ~pos_ref in if Int63.equal tag Int63.zero then Z.zero else ( let negative = Int63.(tag land one = one) in let size_in_bytes = Int63.(to_int_exn (shift_right tag 1)) in (* Even though we could cache a buffer for small sizes, the extra logic leads to a decrease in performance *) let bytes = Bytes.create size_in_bytes in Bin_prot.Common.blit_buf_bytes ~src_pos:!pos_ref buf bytes ~len:size_in_bytes; let abs = Z.of_bits (Bytes.unsafe_to_string ~no_mutation_while_string_reachable:bytes) in pos_ref := !pos_ref + size_in_bytes; if negative then Z.neg abs else abs) ;; let module_name = "Bigint.Stable.V2.t" let bin_writer_t : t Bin_prot.Type_class.writer = { size = bin_size_t; write = bin_write_t } ;; let __bin_read_t__ _buf ~pos_ref _vint = Bin_prot.Common.raise_variant_wrong_type module_name !pos_ref ;; let bin_reader_t : t Bin_prot.Type_class.reader = { read = bin_read_t; vtag_read = __bin_read_t__ } ;; let bin_shape_t : Bin_prot.Shape.t = Bin_prot.Shape.basetype (Bin_prot.Shape.Uuid.of_string "7a8cceb2-f3a2-11e9-b7cb-aae95a547ff6") [] ;; let bin_t : t Bin_prot.Type_class.t = { shape = bin_shape_t; writer = bin_writer_t; reader = bin_reader_t } ;; end end module Unstable = struct include Stable.V1 include Stringable_t let (t_sexp_grammar : t Sexplib.Sexp_grammar.t) = { untyped = Integer } let of_zarith_bigint t = t let to_zarith_bigint t = t let ( /% ) x y = if Z.sign y >= 0 then Z.ediv x y else failwithf "%s.(%s /%% %s) : divisor must be positive" module_name (to_string x) (to_string y) () ;; let ( % ) x y = if Z.sign y >= 0 then Z.erem x y else failwithf "%s.(%s %% %s) : divisor must be positive" module_name (to_string x) (to_string y) () ;; let hash_fold_t state t = Int.hash_fold_t state (Z.hash t) let hash = Z.hash let compare = Z.compare let ( - ) = Z.( - ) let ( + ) = Z.( + ) let ( * ) = Z.( * ) let ( / ) = Z.( / ) let rem = Z.rem let ( ~- ) = Z.( ~- ) let neg = Z.neg let abs = Z.abs let succ = Z.succ let pred = Z.pred let equal = Z.equal let ( = ) = Z.equal let ( < ) = Z.lt let ( > ) = Z.gt let ( <= ) = Z.leq let ( >= ) = Z.geq let max = Z.max let min = Z.min let ascending = compare let shift_right = Z.shift_right let shift_left = Z.shift_left let bit_not = Z.lognot let bit_xor = Z.logxor let bit_or = Z.logor let bit_and = Z.logand let ( land ) = bit_and let ( lor ) = bit_or let ( lxor ) = bit_xor let lnot = bit_not let ( lsl ) = shift_left let ( asr ) = shift_right let of_int = Z.of_int let of_int32 = Z.of_int32 let of_int64 = Z.of_int64 let of_nativeint = Z.of_nativeint let of_float_unchecked = Z.of_float let of_float = Z.of_float let of_int_exn = of_int let of_int32_exn = of_int32 let of_int64_exn = of_int64 let of_nativeint_exn = of_nativeint let to_int_exn = Z.to_int let to_int32_exn = Z.to_int32 let to_int64_exn = Z.to_int64 let to_nativeint_exn = Z.to_nativeint let to_float = Z.to_float let zero = Z.zero let one = Z.one let minus_one = Z.minus_one let to_int t = if Z.fits_int t then Some (Z.to_int t) else None let to_int32 t = if Z.fits_int32 t then Some (Z.to_int32 t) else None let to_int64 t = if Z.fits_int64 t then Some (Z.to_int64 t) else None let to_nativeint t = if Z.fits_nativeint t then Some (Z.to_nativeint t) else None let ( <> ) x y = not (equal x y) let incr cell = cell := succ !cell let decr cell = cell := pred !cell let pow x y = Z.pow x (to_int_exn y) let ( ** ) x y = pow x y let popcount x = Z.popcount x end module T_math = Int_math.Make (Unstable) module T_conversions = Int_conversions.Make (Unstable) module T_comparable_with_zero = Comparable.With_zero (Unstable) module T_identifiable = Identifiable.Make (struct let module_name = module_name include Unstable end) (* Including in opposite order to shadow functorized bindings with direct bindings. *) module O = struct include T_identifiable include T_comparable_with_zero include T_conversions include T_math include Unstable end include (O : module type of O with type t := t) module Make_random (State : sig type t val bits : t -> int val int : t -> int -> int end) : sig val random : state:State.t -> t -> t end = struct (* Uniform random generation of Bigint values. [random ~state range] chooses a [depth] and generates random values using [Random.State.bits state], called [1 lsl depth] times and concatenated. The preliminary result [n] therefore satisfies [0 <= n < 1 lsl (30 lsl depth)]. In order for the random choice to be uniform between [0] and [range-1], there must exist [k > 0] such that [n < k * range <= 1 lsl (30 lsl depth)]. If so, [n % range] is returned. Otherwise the random choice process is repeated from scratch. The [depth] value is chosen so that repeating is uncommon (1 in 1,000 or less). *) let bits_at_depth ~depth = Int.shift_left 30 depth let range_at_depth ~depth = shift_left one (bits_at_depth ~depth) let rec choose_bit_depth_for_range_from ~range ~depth = if range_at_depth ~depth >= range then depth else choose_bit_depth_for_range_from ~range ~depth:(Int.succ depth) ;; let choose_bit_depth_for_range ~range = choose_bit_depth_for_range_from ~range ~depth:0 let rec random_bigint_at_depth ~state ~depth = if Int.equal depth 0 then of_int (State.bits state) else ( let prev_depth = Int.pred depth in let prefix = random_bigint_at_depth ~state ~depth:prev_depth in let suffix = random_bigint_at_depth ~state ~depth:prev_depth in bit_or (shift_left prefix (bits_at_depth ~depth:prev_depth)) suffix) ;; let random_value_is_uniform_in_range ~range ~depth n = let k = range_at_depth ~depth / range in n < k * range ;; let rec large_random_at_depth ~state ~range ~depth = let result = random_bigint_at_depth ~state ~depth in if random_value_is_uniform_in_range ~range ~depth result then result % range else large_random_at_depth ~state ~range ~depth ;; let large_random ~state ~range = let tolerance_factor = of_int 1_000 in let depth = choose_bit_depth_for_range ~range:(range * tolerance_factor) in large_random_at_depth ~state ~range ~depth ;; let random ~state range = if range <= zero then failwithf "Bigint.random: argument %s <= 0" (to_string_hum range) () (* Note that it's not safe to do [1 lsl 30] on a 32-bit machine (with 31-bit signed integers) *) else if range < shift_left one 30 then of_int (State.int state (to_int_exn range)) else large_random ~state ~range ;; end module Random_internal = Make_random (Random.State) let random ?(state = Random.State.default) range = Random_internal.random ~state range module For_quickcheck : sig include Quickcheckable.S_int with type t := t val gen_negative : t Quickcheck.Generator.t val gen_positive : t Quickcheck.Generator.t end = struct module Generator = Quickcheck.Generator open Generator.Let_syntax module Uniform = Make_random (struct type t = Splittable_random.State.t let int t range = Splittable_random.int t ~lo:0 ~hi:(Int.pred range) let bits t = int t (Int.shift_left 1 30) end) let random_uniform ~state lo hi = lo + Uniform.random ~state (succ (hi - lo)) let gen_uniform_incl lower_bound upper_bound = if lower_bound > upper_bound then raise_s [%message "Bigint.gen_uniform_incl: bounds are crossed" (lower_bound : t) (upper_bound : t)]; Generator.create (fun ~size:_ ~random:state -> random_uniform ~state lower_bound upper_bound) ;; let gen_incl lower_bound upper_bound = Generator.weighted_union [ 0.05, Generator.return lower_bound ; 0.05, Generator.return upper_bound ; 0.9, gen_uniform_incl lower_bound upper_bound ] ;; let min_represented_by_n_bits n = if Int.equal n 0 then zero else shift_left one (Int.pred n) ;; let max_represented_by_n_bits n = pred (shift_left one n) let gen_log_uniform_incl lower_bound upper_bound = if lower_bound < zero || lower_bound > upper_bound then raise_s [%message "Bigint.gen_log_incl: invalid bounds" (lower_bound : t) (upper_bound : t)]; let min_bits = Z.numbits lower_bound in let max_bits = Z.numbits upper_bound in let%bind bits = Int.gen_uniform_incl min_bits max_bits in gen_uniform_incl (max lower_bound (min_represented_by_n_bits bits)) (min upper_bound (max_represented_by_n_bits bits)) ;; let gen_log_incl lower_bound upper_bound = Generator.weighted_union [ 0.05, Generator.return lower_bound ; 0.05, Generator.return upper_bound ; 0.9, gen_log_uniform_incl lower_bound upper_bound ] ;; let gen_positive = let%bind extra_bytes = Generator.size in let num_bytes = Int.succ extra_bytes in let num_bits = Int.( * ) num_bytes 8 in gen_log_uniform_incl one (pred (shift_left one num_bits)) ;; let gen_negative = Generator.map gen_positive ~f:neg let quickcheck_generator = Generator.weighted_union [ 0.45, gen_positive; 0.1, Generator.return zero; 0.45, gen_negative ] ;; let quickcheck_observer = Quickcheck.Observer.create (fun t ~size:_ ~hash -> hash_fold_t hash t) ;; let quickcheck_shrinker = Quickcheck.Shrinker.empty () end include For_quickcheck module Hex = struct type nonrec t = t [@@deriving bin_io, typerep] module M = Base.Int_conversions.Make_hex (struct type nonrec t = t [@@deriving hash, compare] let to_string i = Z.format "%x" i let of_hex_string str = Z.of_string_base 16 str let of_string str = of_string_base str ~name:"Hex.of_string" ~of_string:of_hex_string let ( < ) = ( < ) let neg = neg let zero = zero let module_name = module_name ^ ".Hex" end) include ( M.Hex : module type of struct include M.Hex end with type t := t) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>