package bignum
Install
Dune Dependency
Authors
Maintainers
Sources
sha256=77a46816c8a0af4d76cdbcf17fcba9a068506fc70a3836fa6a07095bc0bfde81
md5=d97af8dc866db3eda78b1edc6c0982bf
doc/bignum.bigint/Bigint/index.html
Module Bigint
gen
produces integers representable within Quickcheck.size
bytes, with a random sign.
include Core_kernel.Int_intf.S_unbounded with type t := t
include Base.Int.S_unbounded with type t := t
include Base.Identifiable.S with type t := t
include Base.Stringable.S with type t := t
include Base.Comparable.S with type t := t
include Base.Comparisons.S with type t := t
include Base.Comparisons.Infix with type t := t
include Base.Comparator.S with type t := t
include Base.Pretty_printer.S with type t := t
include Base.Comparable.With_zero with type t := t
val validate_positive : t Base.Validate.check
val validate_non_negative : t Base.Validate.check
val validate_negative : t Base.Validate.check
val validate_non_positive : t Base.Validate.check
val is_positive : t -> bool
val is_non_negative : t -> bool
val is_negative : t -> bool
val is_non_positive : t -> bool
val sign : t -> Base__.Sign0.t
Returns Neg
, Zero
, or Pos
in a way consistent with the above functions.
include Base.Invariant.S with type t := t
val invariant : t -> unit
val to_string_hum : ?delimiter:char -> t -> string
delimiter
is an underscore by default.
Infix operators and constants
val zero : t
val one : t
val minus_one : t
Negation
There are two pairs of integer division and remainder functions, /%
and %
, and /
and rem
. They both satisfy the same equation relating the quotient and the remainder:
x = (x /% y) * y + (x % y);
x = (x / y) * y + (rem x y);
The functions return the same values if x
and y
are positive. They all raise if y = 0
.
The functions differ if x < 0
or y < 0
.
If y < 0
, then %
and /%
raise, whereas /
and rem
do not.
x % y
always returns a value between 0 and y - 1
, even when x < 0
. On the other hand, rem x y
returns a negative value if and only if x < 0
; that value satisfies abs (rem x y) <= abs y - 1
.
Other common functions
round
rounds an int to a multiple of a given to_multiple_of
argument, according to a direction dir
, with default dir
being `Nearest
. round
will raise if to_multiple_of <= 0
. If the result overflows (too far positive or too far negative), round
returns an incorrect result.
| `Down | rounds toward Int.neg_infinity | | `Up | rounds toward Int.infinity | | `Nearest | rounds to the nearest multiple, or `Up in case of a tie | | `Zero | rounds toward zero |
Here are some examples for round ~to_multiple_of:10
for each direction:
| `Down | {10 .. 19} --> 10 | { 0 ... 9} --> 0 | {-10 ... -1} --> -10 | | `Up | { 1 .. 10} --> 10 | {-9 ... 0} --> 0 | {-19 .. -10} --> -10 | | `Zero | {10 .. 19} --> 10 | {-9 ... 9} --> 0 | {-19 .. -10} --> -10 | | `Nearest | { 5 .. 14} --> 10 | {-5 ... 4} --> 0 | {-15 ... -6} --> -10 |
For convenience and performance, there are variants of round
with dir
hard-coded. If you are writing performance-critical code you should use these.
Returns the absolute value of the argument. May be negative if the input is min_value
.
Successor and predecessor functions
Exponentiation
pow base exponent
returns base
raised to the power of exponent
. It is OK if base <= 0
. pow
raises if exponent < 0
, or an integer overflow would occur.
Bit-wise logical operations
These are identical to land
, lor
, etc. except they're not infix and have different names.
val popcount : t -> int
Returns the number of 1 bits in the binary representation of the input.
Bit-shifting operations
The results are unspecified for negative shifts and shifts >= num_bits
.
Increment and decrement functions for integer references
Conversion functions to related integer types
val of_int32_exn : int32 -> t
val to_int32_exn : t -> int32
val of_int64_exn : int64 -> t
val of_nativeint_exn : nativeint -> t
val to_nativeint_exn : t -> nativeint
val of_float_unchecked : float -> t
of_float_unchecked
truncates the given floating point number to an integer, rounding towards zero. The result is unspecified if the argument is nan or falls outside the range of representable integers.
module O : sig ... end
A sub-module designed to be opened to make working with ints more convenient.
include Core_kernel.Int_intf.Extension
with type t := t
with type comparator_witness := comparator_witness
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
include Typerep_lib.Typerepable.S with type t := t
val typerep_of_t : t Typerep_lib.Std_internal.Typerep.t
val typename_of_t : t Typerep_lib.Typename.t
include Core_kernel.Int_intf.Hexable with type t := t
module Hex : sig ... end
include Core_kernel.Identifiable.S
with type t := t
with type comparator_witness := comparator_witness
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_shape_t : Bin_prot.Shape.t
include Ppx_sexp_conv_lib.Sexpable.S with type t := t
val t_of_sexp : Sexplib0__.Sexp.t -> t
include Core_kernel.Identifiable.S_common with type t := t
val sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
include Base.Pretty_printer.S with type t := t
val pp : Base.Formatter.t -> t -> unit
include Core_kernel.Comparable.S_binable
with type t := t
with type comparator_witness := comparator_witness
include Base.Comparable.S
with type t := t
with type comparator_witness := comparator_witness
include Base.Comparisons.S with type t := t
compare t1 t2
returns 0 if t1
is equal to t2
, a negative integer if t1
is less than t2
, and a positive integer if t1
is greater than t2
.
ascending
is identical to compare
. descending x y = ascending y x
. These are intended to be mnemonic when used like List.sort ~compare:ascending
and List.sort ~cmp:descending
, since they cause the list to be sorted in ascending or descending order, respectively.
clamp_exn t ~min ~max
returns t'
, the closest value to t
such that between t' ~low:min ~high:max
is true.
Raises if not (min <= max)
.
val clamp : t -> min:t -> max:t -> t Base.Or_error.t
include Base.Comparator.S
with type t := t
with type comparator_witness := comparator_witness
val validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_bound :
min:t Base.Maybe_bound.t ->
max:t Base.Maybe_bound.t ->
t Base.Validate.check
module Replace_polymorphic_compare :
Base.Comparable.Polymorphic_compare with type t := t
include Core_kernel.Comparator.S
with type t := t
with type comparator_witness := comparator_witness
val comparator : (t, comparator_witness) Base.Comparator.comparator
module Map :
Core_kernel.Map.S_binable
with type Key.t = t
with type Key.comparator_witness = comparator_witness
module Set :
Core_kernel.Set.S_binable
with type Elt.t = t
with type Elt.comparator_witness = comparator_witness
include Core_kernel.Hashable.S_binable with type t := t
val hash_fold_t :
Ppx_hash_lib.Std.Hash.state ->
t ->
Ppx_hash_lib.Std.Hash.state
val hash : t -> Ppx_hash_lib.Std.Hash.hash_value
val hashable : t Base.Hashable.t
module Table : Core_kernel.Hashtbl.S_binable with type key = t
module Hash_set : Core_kernel.Hash_set.S_binable with type elt = t
module Hash_queue : Core_kernel.Hash_queue.S with type key = t
include Core_kernel.Quickcheckable.S_int with type t := t
include Core_kernel.Quickcheck_intf.S_range with type t := t
include Core_kernel.Quickcheck_intf.S with type t := t
val quickcheck_generator : t Base_quickcheck.Generator.t
val quickcheck_observer : t Base_quickcheck.Observer.t
val quickcheck_shrinker : t Base_quickcheck.Shrinker.t
val gen_incl : t -> t -> t Base_quickcheck.Generator.t
gen_incl lower_bound upper_bound
produces values between lower_bound
and upper_bound
, inclusive. It uses an ad hoc distribution that stresses boundary conditions more often than a uniform distribution, while still able to produce any value in the range. Raises if lower_bound > upper_bound
.
val gen_uniform_incl : t -> t -> t Base_quickcheck.Generator.t
gen_uniform_incl lower_bound upper_bound
produces a generator for values uniformly distributed between lower_bound
and upper_bound
, inclusive. Raises if lower_bound > upper_bound
.
val gen_log_uniform_incl : t -> t -> t Base_quickcheck.Generator.t
gen_log_uniform_incl lower_bound upper_bound
produces a generator for values between lower_bound
and upper_bound
, inclusive, where the number of bits used to represent the value is uniformly distributed. Raises if (lower_bound < 0) || (lower_bound > upper_bound)
.
val gen_log_incl : t -> t -> t Base_quickcheck.Generator.t
gen_log_incl lower_bound upper_bound
is like gen_log_uniform_incl
, but weighted slightly more in favor of generating lower_bound
and upper_bound
specifically.
val to_int64_exn : t -> Core_kernel.Int64.t
val to_int : t -> int option
val to_int32 : t -> Core_kernel.Int32.t option
val to_int64 : t -> Core_kernel.Int64.t option
val to_nativeint : t -> nativeint option
val of_int : int -> t
val of_int32 : Core_kernel.Int32.t -> t
val of_int64 : Core_kernel.Int64.t -> t
val of_nativeint : nativeint -> t
val random : ?state:Core_kernel.Random.State.t -> t -> t
random t
produces a value uniformly distributed between zero
(inclusive) and t
(exclusive), or raises if t <= zero
.
val gen_positive : t Core_kernel.Quickcheck.Generator.t
val gen_negative : t Core_kernel.Quickcheck.Generator.t
module Stable : sig ... end
module Unstable : sig ... end
val bin_size_t : t Core_kernel.Bin_prot.Size.sizer
val bin_write_t : t Core_kernel.Bin_prot.Write.writer
val bin_read_t : t Core_kernel.Bin_prot.Read.reader
val __bin_read_t__ : (int -> t) Core_kernel.Bin_prot.Read.reader
val bin_writer_t : t Core_kernel.Bin_prot.Type_class.writer
val bin_reader_t : t Core_kernel.Bin_prot.Type_class.reader
val bin_t : t Core_kernel.Bin_prot.Type_class.t