package bap-std
Install
Dune Dependency
Authors
Maintainers
Sources
sha256=7c6d0dfe2640e800829617dd150ffe748493fe3f317ed41be44312b2821deb46
md5=5dbc6677d646bec59fd7414f23e88cf8
doc/bap/Bap/Std/Blk/index.html
Module Std.Blk
Basic block.
Logically block consists of a set of phi nodes, a sequence of definitions and a sequence of out-coming edges, aka jumps. A colloquial term for this three entities is a block element.
The order of Phi-nodes can be specified in any order, as they execute simultaneously . Definitions are stored in the order of execution. Jumps are specified in the order in which they should be taken, i.e., jmp_n is taken only after jmp_n-1 and if and only if the latter was not taken. For example, if block ends with N jumps, where each n-th jump have destination named t_n and condition c_n then it would have the semantics as per the following OCaml program:
if c_1 then jump t_1 else if c_2 then jump t_2 else if c_N then jump t_N else stop
Union type for all element types
lift block
takes a basic block of assembly instructions and lifts it to a list of blk terms. The first term in the list is the entry.
from_insn insn
creates an IR representation of a single machine instruction insn
.
split_while blk ~f
splits blk
into two block: the first block holds all definitions for which f p
is true and has the same tid as blk
. The second block is freshly created and holds the rest definitions (if any). All successors of the blk
become successors of the second block, which becomes the successor of the first block.
Note: if f def
is true
for all blocks, then the second block will not contain any definitions, i.e., the result would be the same as of split_bot function.
split_after blk def
creates two new blocks, where the first block contains all defintions up to def
inclusive, the second contains the rest.
Note: if def is not in a blk
then the first block will contain all the defintions, and the second block will be empty.
split_before blk def
is like split_after but def
will fall into the second blk
split_top blk
returns two blocks, where first block shares the same tid as blk
and has all $\Phi$-nodes of blk
, but has only one destination, namely the second block. Second block has new tidentity, but inherits all definitions and jumps from the blk
.
split_top blk
returns two blocks, where first block shares the same tid as blk
, has all $\Phi$-nodes and definitions from blk
, but has only one destination, namely the second block. Second block has new tidentity, all jumps from the blk
.
elts ~rev blk
return all elements of the blk
. if rev
is false or left unspecified, then elements are returned in the following order: $\Phi$-nodes, defs (in normal order), jmps in the order in which they will be taken. If rev
is true, the order will be the following: all jumps in the opposite order, then definitions in the opposite order, and finally $\Phi$-nodes.
map_exp b ~f
applies function f
for each expression in block b
. By default function f
will be applied to all values of type exp
, including right hand sides of phi-nodes, definitions, jump conditions and targets. If skip
parameter is specified, then terms of corresponding kind will be skipped, i.e., function f
will not be applied to them.
val map_elts :
?phi:(phi term -> phi term) ->
?def:(def term -> def term) ->
?jmp:(jmp term -> jmp term) ->
blk term ->
blk term
map_elt ?phi ?def ?jmp blk
applies provided functions to the terms of corresponding classes. All functions default to the identity function.
substitute ?skip blk x y
substitutes each occurrence of expression x
with expression y
in block blk
. The substitution is performed deeply. If skip
parameter is specified, then terms of corresponding kind will be left untouched.
map_lhs blk ~f
applies f
to every left hand side variable in def and phi subterms of blk
. If skip
parameter is specified, then terms of corresponding kind will be left untouched. E.g., map_lhs ~skip:[`phi] ~f:(substitute vars)
will perform a substitution only on definitions (and will ignore phi-nodes)
find_var blk var
finds a last definition of a variable var
in a block blk
.
defines_var blk x
true if there exists such phi term or def term with left hand side equal to x
free_vars blk
returns a set of variables that occurs free in block blk
. A variable is free, if it occurs unbound in the expression and there is no preceding definition of this variable in a block blk
.
uses_var blk x
true if variable x
is in free_vars blk
. If you need to call this function on several variables it is better to compute free_vars
explicitly and use Set.mem
function.
occurs blk after:x def
if def
is occurs after definition def
in blk
.
module Builder : sig ... end
Builder interface.
val pp_slots : string list -> Format.formatter -> t -> unit
pp_slots names
prints slots that are in names
.
include Regular.Std.Regular.S with type t := t
include Core_kernel.Bin_prot.Binable.S with type t := t
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (int -> t) Bin_prot.Read.reader
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_t : t Bin_prot.Type_class.t
include Regular.Std.Printable.S with type t := t
val to_string : t -> string
to_string x
returns a human-readable representation of x
val str : unit -> t -> string
str () t
is formatted output function that matches "%a" conversion format specifier in functions, that prints to string, e.g., sprintf
, failwithf
, errorf
and, surprisingly all Lwt
printing function, including Lwt_io.printf
and logging (or any other function with type ('a,unit,string,...) formatN`. Example:
Or_error.errorf "type %a is not valid for %a"
Type.str ty Exp.str exp
val pps : unit -> t -> string
synonym for str
val ppo : Core_kernel.Out_channel.t -> t -> unit
will print to a standard output_channel
, useful for using in printf
, fprintf
, etc.
val pp_seq : Format.formatter -> t Core_kernel.Sequence.t -> unit
prints a sequence of values of type t
this will include pp
function from Core
that has type t printer
, and can be used in Format.printf
family of functions
include Core_kernel.Pretty_printer.S with type t := t
val pp : Base__.Formatter.t -> t -> unit
include Core_kernel.Comparable.S_binable with type t := t
include Base.Comparable.S with type t := t
compare t1 t2
returns 0 if t1
is equal to t2
, a negative integer if t1
is less than t2
, and a positive integer if t1
is greater than t2
.
ascending
is identical to compare
. descending x y = ascending y x
. These are intended to be mnemonic when used like List.sort ~compare:ascending
and List.sort ~cmp:descending
, since they cause the list to be sorted in ascending or descending order, respectively.
clamp_exn t ~min ~max
returns t'
, the closest value to t
such that between t' ~low:min ~high:max
is true.
Raises if not (min <= max)
.
module Replace_polymorphic_compare :
Base.Comparable.Polymorphic_compare with type t := t
val comparator : (t, comparator_witness) Base__.Comparator.comparator
module Map :
Core_kernel.Map.S_binable
with type Key.t = t
with type Key.comparator_witness = comparator_witness
module Set :
Core_kernel.Set.S_binable
with type Elt.t = t
with type Elt.comparator_witness = comparator_witness
include Core_kernel.Hashable.S_binable with type t := t
val hash_fold_t :
Ppx_hash_lib.Std.Hash.state ->
t ->
Ppx_hash_lib.Std.Hash.state
val hash : t -> Ppx_hash_lib.Std.Hash.hash_value
val hashable : t Core_kernel.Hashtbl.Hashable.t
module Table : Core_kernel.Hashtbl.S_binable with type key = t
module Hash_set : Core_kernel.Hash_set.S_binable with type elt = t
module Hash_queue : Core_kernel.Hash_queue.S with type key = t
include Regular.Std.Data.S with type t := t
name,Ver v,desc
information attached to a particular reader or writer.
Data representation version. After any change in data representation the version should be increased.
Serializers that are derived from a data representation must have the same version as a version of the data structure, from which it is derived. This kind of serializers can only read and write data of the same version.
Other serializers can actually read and write data independent on its representation version. A serializer, that can't store data of current version simply shouldn't be added to a set of serializers.
It is assumed, that if a reader and a writer has the same name and version, then whatever was written by the writer should be readable by the reader. The round-trip equality is not required, thus it is acceptable if some information is lost.
It is also possible, that a reader and a writer that has the same name are compatible. In that case it is recommended to use semantic versioning.
val size_in_bytes : ?ver:string -> ?fmt:string -> t -> int
size_in_bytes ?ver ?fmt datum
returns the amount of bytes that is needed to represent datum
in the given format and version
val of_bytes : ?ver:string -> ?fmt:string -> Regular.Std.bytes -> t
of_bytes ?ver ?fmt bytes
deserializes a value from bytes.
val to_bytes : ?ver:string -> ?fmt:string -> t -> Regular.Std.bytes
to_bytes ?ver ?fmt datum
serializes a datum
to a sequence of bytes.
val blit_to_bytes :
?ver:string ->
?fmt:string ->
Regular.Std.bytes ->
t ->
int ->
unit
blit_to_bytes ?ver ?fmt buffer datum offset
copies a serialized representation of datum into a buffer
, starting from the offset
.
val of_bigstring : ?ver:string -> ?fmt:string -> Core_kernel.bigstring -> t
of_bigstring ?ver ?fmt buf
deserializes a datum from bigstring
val to_bigstring : ?ver:string -> ?fmt:string -> t -> Core_kernel.bigstring
of_bigstring ?ver ?fmt datum
serializes a datum to a sequence of bytes represented as bigstring
val blit_to_bigstring :
?ver:string ->
?fmt:string ->
Core_kernel.bigstring ->
t ->
int ->
unit
blit_to_bigstring ?ver ?fmt buffer datum offset
copies a serialized representation of datum into a buffer
, starting from offset
.
module Io : sig ... end
Input/Output functions for the given datum.
module Cache : sig ... end
Data cache.
val add_reader :
?desc:string ->
ver:string ->
string ->
t Regular.Std.reader ->
unit
add_reader ?desc ~ver name reader
registers a new reader
with a provided name
, version ver
and optional description desc
val add_writer :
?desc:string ->
ver:string ->
string ->
t Regular.Std.writer ->
unit
add_writer ?desc ~ver name writer
registers a new writer
with a provided name
, version ver
and optional description desc
val available_readers : unit -> info list
available_reader ()
lists available readers for the data type
val default_reader : unit -> info
default_reader
returns information about default reader
set_default_reader ?ver name
sets new default reader. If version is not specified then the latest available version is used. Raises an exception if a reader with a given name doesn't exist.
with_reader ?ver name operation
temporary sets a default reader to a reader with a specified name and version. The default reader is restored after operation
is finished.
val available_writers : unit -> info list
available_writer ()
lists available writers for the data type
val default_writer : unit -> info
default_writer
returns information about the default writer
set_default_writer ?ver name
sets new default writer. If version is not specified then the latest available version is used. Raises an exception if a writer with a given name doesn't exist.
with_writer ?ver name operation
temporary sets a default writer to a writer with a specified name and version. The default writer is restored after operation
is finished.
val default_printer : unit -> info option
default_writer
optionally returns an information about default printer
set_default_printer ?ver name
sets new default printer. If version is not specified then the latest available version is used. Raises an exception if a printer with a given name doesn't exist.
with_printer ?ver name operation
temporary sets a default printer to a printer with a specified name and version. The default printer is restored after operation
is finished.
Low level access to serializers
val find_reader : ?ver:string -> string -> t Regular.Std.reader option
find_reader ?ver name
lookups a reader with a given name. If version is not specified, then a reader with maximum version is returned.
val find_writer : ?ver:string -> string -> t Regular.Std.writer option
find_writer ?ver name
lookups a writer with a given name. If version is not specified, then a writer with maximum version is returned.