package async_unix
Monadic concurrency library
Install
Dune Dependency
Authors
Maintainers
Sources
v0.17.0.tar.gz
sha256=814d3a9997ec1316b8b2a601b24471740641647a25002761f7df7869c3ac9e33
doc/src/async_unix.thread_pool/thread_pool.ml.html
Source file thread_pool.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
open! Core open! Import module Cpu_affinity = Thread_pool_cpu_affinity let debug_log message a sexp_of_a = eprintf "%s\n%!" (Sexp.to_string_hum [%sexp (Time_ns.now () : Time_ns.t), (message : string), (a : a)]) ;; module Time_ns = struct include Time_ns let sexp_of_t t = [%sexp (if am_running_test then epoch else t : t)] end module Thread_id : sig type t [@@deriving sexp_of] include Hashable with type t := t val of_ocaml_thread : Core_thread.t -> t val self : unit -> t end = struct include Int let of_ocaml_thread = Core_thread.id let self () = of_ocaml_thread (Core_thread.self ()) end module Priority = Linux_ext.Priority let priority_zero = Priority.of_int 0 let getpriority = match Linux_ext.getpriority with | Error _ -> const priority_zero | Ok f -> fun () -> f () ;; let setpriority = match Linux_ext.setpriority with | Error _ -> Fn.ignore | Ok f -> fun p -> f p ;; let set_thread_name = match Linux_ext.pr_set_name_first16 with | Ok f -> f | Error _ -> Fn.ignore ;; let debug = ref false (* We define everything in an [Internal] module, and then wrap in a [Mutex.critical_section] each thread-safe function exposed in the mli. When reading code here, keep in mind that there are two entry points: (1) The functions that are exposed for external consumption in the mli (these are protected by the mutex). (2) Code that is called within threads created in this module. All such code should acquire the mutex before it affects the thread state. *) module Internal = struct module Mutex = Nano_mutex let check_invariant = ref false let error = Or_error.error module Pool_id : Unique_id = Unique_id.Int63 () module Work = struct type t = { (* When this work starts running, the name of the thread will be set (via [Linux_ext.pr_set_name]) to[name]. *) name : string ; doit : unit -> unit ; enqueued_at : Time_ns.t ; priority : Priority.t } [@@deriving sexp_of] let enqueued_for t = let now = Time_ns.now () in Time_ns.diff now t.enqueued_at ;; end module Work_queue = struct type elt = | Stop | Work of Work.t [@@deriving sexp_of] type t = elt Squeue.t [@@deriving sexp_of] let create () = Squeue.create 1 let enqueue t work = Squeue.push_uncond t work end module Helper_thread = struct type 'thread t = { in_pool : Pool_id.t ; mutable state : [ `In_use | `Finishing | `Finished ] ; thread : 'thread (* [default_name] will be used as the name of work run by the helper thread, unless that work is added with an overriding name. *) ; default_name : string (* [default_priority] will be used as the priority of work run by the helper thread, unless that work is added with an overriding priority. *) ; default_priority : Priority.t } [@@deriving fields ~getters, sexp_of] end module Thread = struct type t = { (* [name] is the name of the thread that the OS knows, i.e. the argument supplied to the most recent call to [set_thread_name] by the thread. *) mutable name : string (* [thread_id] is the OCaml thread id of the OCaml thread that this corresponds to. It is an option only because we create this object before creating the thread. We set it to [Some] as soon as we create the thread, and then never change it. *) ; mutable thread_id : Thread_id.t option (* [priority] is the priority of the thread that the OS knows, i.e. the argument supplied in the most recent call to [setpriority] by the thread. *) ; mutable priority : Priority.t (* A thread can be "available", meaning that it isn't working on anything, or doing work added to the thread pool, or serving as a helper thread. *) ; mutable state : [ `Available | `Working | `Helper of (t[@sexp.opaque]) Helper_thread.t ] (* [unfinished_work] is the amount of work remaining for this thread to do. It includes all the work in [work_queue], plus perhaps an additional work that is running. *) ; mutable unfinished_work : int (* [work_queue] is where this thread pulls work from. Each thread has its own queue. If a thread is working for the general pool, then its work queue has at most one element. If a thread is a helper thread, then the work queue has all the unfinished work that has been added for the helper thread. *) ; work_queue : Work_queue.t } [@@deriving fields ~iterators:iter, sexp_of] let invariant t : unit = try let check invariant field = invariant (Field.get field t) in Fields.iter ~name:ignore ~thread_id:(check (fun o -> assert (is_some o))) ~priority:ignore ~state:ignore ~unfinished_work: (check (fun unfinished_work -> assert ( unfinished_work = Squeue.length t.work_queue || unfinished_work = Squeue.length t.work_queue + 1))) ~work_queue:ignore with | exn -> raise_s [%message "Thread.invariant failed" (exn : exn) ~thread:(t : t)] ;; let is_available t = match t.state with | `Available -> true | `Working | `Helper _ -> false ;; let create priority = { name = "" ; thread_id = None ; priority ; state = `Available ; unfinished_work = 0 ; work_queue = Work_queue.create () } ;; let enqueue_work t work = t.unfinished_work <- t.unfinished_work + 1; Work_queue.enqueue t.work_queue (Work work) ;; let stop t = Work_queue.enqueue t.work_queue Stop let initialize_ocaml_thread t (cpu_affinity : Cpu_affinity.t) = set_thread_name t.name; (* We call [getpriority] to see whether we need to set the priority. This is not a performance optimization. It is done so that in programs that don't use priorities, we never call [setpriority], and thus prevent problems due to the user's "ulimit -e" being too restrictive. The use of [getpriority] is limited to initialization, and is not used elsewhere in this module. *) if not (Priority.equal (getpriority ()) t.priority) then setpriority t.priority; match cpu_affinity with | Inherit -> () | Cpuset cpuset -> Or_error.ok_exn Core_thread.setaffinity_self_exn (cpuset |> Cpu_affinity.Cpuset.raw) ;; let set_name t name = if String.( <> ) name t.name then ( set_thread_name name; t.name <- name) ;; let set_priority t priority = if not (Priority.equal t.priority priority) then ( setpriority priority; t.priority <- priority) ;; end module Thread_creation_failure = struct type t = { at : Time_ns.t ; error : Error.t } [@@deriving fields ~getters, sexp_of] end (* [Thread_pool.t] *) type t = { id : Pool_id.t (** [state] starts as [`In_use] when the thread pool is created. When the user calls [finished_with], it transitions to [`Finishing]. When the last work is done, it transitions to [`Finished] and fills [finished]. *) ; mutable state : [ `In_use | `Finishing | `Finished ] ; finished : unit Thread_safe_ivar.t (* [mutex] is used to protect all access to [t] and its substructures, since the threads actually doing the work need to access[t]. *) ; mutex : Mutex.t (** [default_priority] is the priority that will be used for work unless that work is added with an overriding priority. It is set to whatever the priority is when the thread pool is created. *) ; default_priority : Priority.t (* [max_num_threads] is the maximum number of threads that the thread pool is allowed to create. *) ; max_num_threads : int (* [cpu_affinity] is the desired CPU affinity for threads in this pool. *) ; cpu_affinity : Cpu_affinity.t (* [num_threads] is the number of threads that have been created by the pool. The thread pool guarantees that [num_threads <= max_num_threads]. *) ; mutable num_threads : int (* [thread_creation_failure_lockout] is the amount of time that must pass after a thread-creation failure before the thread pool will make another attempt to create a thread. *) ; mutable thread_creation_failure_lockout : Time_ns.Span.t (* [last_thread_creation_failure] has information about the last time that [Core_thread.create] raised. *) ; mutable last_thread_creation_failure : Thread_creation_failure.t option (* [thread_by_id] holds all the threads that have been created by the pool. *) ; mutable thread_by_id : Thread.t Thread_id.Table.t (* [available_threads] holds all threads that have [state = `Available]. It is used as a stack so that the most recently used available thread is used next, on the theory that this is better for locality. *) ; mutable available_threads : Thread.t list (* [work_queue] holds work to be done for which no thread is available. *) ; work_queue : Work.t Queue.t (* [unfinished_work] holds the amount of work that has been submitted to the pool but not yet been completed. *) ; mutable unfinished_work : int ; mutable num_work_completed : int ; mutable num_working_threads : int ; mutable aggregate_working_start_time_since_epoch : Time_ns.Span.t (** [aggregate_working_start_time_since_epoch] is the the sum of, for each working thread, the span from the epoch to when it started that work. This is used to compute a [total_working_time] that includes the currently working threads, by subtracting this number from (the current span since the epoch) times num_working_threads. It's expected that this value may overflow and wrap around, that overflow will get cancelled out when computing the working time. *) ; mutable total_completed_working_time : Time_ns.Span.t (** [total_completed_working_time] is the total time spent working across all completed jobs. This could technically be combined with [aggregate_working_start_time_since_epoch], but this is clearer and the extra bookkeeping is unlikely to be measurable. *) ; mutable max_recent_unfinished_work : int (** [max_recent_unfinished_work] tracks the max seen value of [unfinished_work] since [get_and_reset_stats] was last called. *) ; mutable max_recent_completed_queue_wait : Time_ns.Span.t (** [max_recent_completed_queue_wait] tracks the max time a task has waited in [work_queue] since [get_and_reset_stats] was last called. *) } [@@deriving fields ~getters ~iterators:iter, sexp_of] let invariant t : unit = try let check invariant field = invariant (Field.get field t) in Fields.iter ~id:ignore ~state: (check (function | `In_use | `Finishing -> () | `Finished -> assert (t.unfinished_work = 0); assert (t.num_threads = 0))) ~finished:ignore ~cpu_affinity:ignore ~mutex:(check Mutex.invariant) ~default_priority:ignore ~max_num_threads:(check (fun max_num_threads -> assert (max_num_threads >= 1))) ~num_threads: (check (fun num_threads -> assert (num_threads = Hashtbl.length t.thread_by_id); assert (num_threads <= t.max_num_threads))) ~thread_creation_failure_lockout:ignore ~last_thread_creation_failure:ignore ~thread_by_id: (check (fun thread_by_id -> Thread_id.Table.invariant Thread.invariant thread_by_id)) ~available_threads: (check (fun available_threads -> assert (List.length available_threads <= t.num_threads); List.iter available_threads ~f:(fun thread -> assert ( Hashtbl.exists t.thread_by_id ~f:(fun thread' -> phys_equal thread thread')); assert (Thread.is_available thread)))) ~work_queue: (check (fun work_queue -> (* It is possible that: {[ has_unstarted_work t && t.num_threads < t.max_num_threads ]} This happens when adding work and [Core_thread.create] raises. In that case, the thread pool enqueues the work and continues with the threads it has. If the thread pool can't make progress, then Async's thread-pool-stuck detection will later report it. *) assert (Queue.is_empty work_queue || List.is_empty t.available_threads))) ~unfinished_work:(check (fun unfinished_work -> assert (unfinished_work >= 0))) ~num_work_completed: (check (fun num_work_completed -> assert (num_work_completed >= 0))) ~num_working_threads: (check (fun num_working_threads -> assert (num_working_threads <= t.num_threads))) ~aggregate_working_start_time_since_epoch:ignore ~total_completed_working_time: (check (fun total_completed_working_time -> assert (Time_ns.Span.( >= ) total_completed_working_time Time_ns.Span.zero))) ~max_recent_unfinished_work: (check (fun max_recent_unfinished_work -> assert (max_recent_unfinished_work >= t.unfinished_work))) ~max_recent_completed_queue_wait: (check (fun max_recent_completed_queue_wait -> assert (Time_ns.Span.( >= ) max_recent_completed_queue_wait Time_ns.Span.zero))) with | exn -> raise_s [%message "Thread_pool.invariant failed" (exn : exn) ~thread_pool:(t : t)] ;; let is_finished t = match t.state with | `Finished -> true | `Finishing | `In_use -> false ;; let is_in_use t = match t.state with | `In_use -> true | `Finishing | `Finished -> false ;; let has_unstarted_work t = not (Queue.is_empty t.work_queue) let create ?(cpu_affinity = Cpu_affinity.Inherit) ~max_num_threads () = if match cpu_affinity with | Inherit -> false | Cpuset _ -> Or_error.is_error Core_thread.setaffinity_self_exn then Or_error.error_string "Thread_pool.create setaffinity not supported on this platform" else if max_num_threads < 1 then error "Thread_pool.create max_num_threads was < 1" max_num_threads [%sexp_of: int] else ( let t = { id = Pool_id.create () ; state = `In_use ; finished = Thread_safe_ivar.create () ; mutex = Mutex.create () ; default_priority = getpriority () ; cpu_affinity ; max_num_threads ; num_threads = 0 ; thread_by_id = Thread_id.Table.create () ; thread_creation_failure_lockout = (* to avoid noise in tests (where a single transient thread-creation failure counts as "stuck"), this should be smaller than thread pool stuck check interval (happens to be 1.0s) *) sec 0.5 ; last_thread_creation_failure = None ; available_threads = [] ; work_queue = Queue.create () ; unfinished_work = 0 ; num_work_completed = 0 ; num_working_threads = 0 ; aggregate_working_start_time_since_epoch = Time_ns.Span.zero ; total_completed_working_time = Time_ns.Span.zero ; max_recent_unfinished_work = 0 ; max_recent_completed_queue_wait = Time_ns.Span.zero } in Ok t) ;; let maybe_finish t = match t.state with | `In_use | `Finished -> () | `Finishing -> if t.unfinished_work = 0 then ( let set x f = Option.value_exn (Field.setter f) t x in Fields.iter ~id:ignore ~state:(set `Finished) ~finished:(fun _ -> Thread_safe_ivar.fill t.finished ()) ~mutex:ignore ~default_priority:ignore ~cpu_affinity:ignore ~max_num_threads:ignore ~num_threads:(set 0) ~thread_creation_failure_lockout:ignore ~last_thread_creation_failure:ignore ~thread_by_id:(fun _ -> Hashtbl.iter t.thread_by_id ~f:Thread.stop; Hashtbl.clear t.thread_by_id) ~available_threads:(set []) ~work_queue:ignore ~unfinished_work:ignore ~num_work_completed:ignore ~num_working_threads:ignore ~aggregate_working_start_time_since_epoch:ignore ~total_completed_working_time:ignore ~max_recent_unfinished_work:ignore ~max_recent_completed_queue_wait:ignore) ;; let finished_with t = if !debug then debug_log "Thread_pool.finished_with" t [%sexp_of: t]; match t.state with | `Finishing | `Finished -> () | `In_use -> t.state <- `Finishing; maybe_finish t ;; let assign_work_to_thread (thread : Thread.t) work = thread.state <- `Working; Thread.enqueue_work thread work ;; let make_thread_available t thread = if !debug then debug_log "make_thread_available" (thread, t) [%sexp_of: Thread.t * t]; match Queue.dequeue t.work_queue with | Some work -> let enqueued_for = Work.enqueued_for work in if Time_ns.Span.( > ) enqueued_for t.max_recent_completed_queue_wait then t.max_recent_completed_queue_wait <- enqueued_for; assign_work_to_thread thread work | None -> thread.state <- `Available; t.available_threads <- thread :: t.available_threads; maybe_finish t ;; let maybe_finish_helper_thread t (helper_thread : Thread.t Helper_thread.t) = match helper_thread.state with | `In_use | `Finished -> () | `Finishing -> let thread = helper_thread.thread in if thread.unfinished_work = 0 then ( helper_thread.state <- `Finished; make_thread_available t thread) ;; let create_thread t = if !debug then debug_log "create_thread" t [%sexp_of: t]; let thread = Thread.create t.default_priority in let ocaml_thread = Or_error.try_with (fun () -> Core_thread.create ~on_uncaught_exn:`Print_to_stderr (fun () -> Thread.initialize_ocaml_thread thread t.cpu_affinity; let rec loop () = match Squeue.pop thread.work_queue with | Stop -> () | Work work -> let started_working_at = Time_ns.now () in Mutex.critical_section t.mutex ~f:(fun () -> t.aggregate_working_start_time_since_epoch <- Time_ns.Span.( + ) t.aggregate_working_start_time_since_epoch (Time_ns.to_span_since_epoch started_working_at); t.num_working_threads <- t.num_working_threads + 1); if !debug then debug_log "thread got work" (work, thread, t) [%sexp_of: Work.t * Thread.t * t]; Thread.set_name thread work.name; Thread.set_priority thread work.priority; (try work.doit () (* the actual work *) with | _ -> ()); t.num_work_completed <- t.num_work_completed + 1; if !debug then debug_log "thread finished with work" (work, thread, t) [%sexp_of: Work.t * Thread.t * t]; let stopped_working_at = Time_ns.now () in Mutex.critical_section t.mutex ~f:(fun () -> t.unfinished_work <- t.unfinished_work - 1; t.num_working_threads <- t.num_working_threads - 1; t.total_completed_working_time <- Time_ns.Span.( + ) t.total_completed_working_time (Time_ns.diff stopped_working_at started_working_at); t.aggregate_working_start_time_since_epoch <- Time_ns.Span.( - ) t.aggregate_working_start_time_since_epoch (Time_ns.to_span_since_epoch started_working_at); thread.unfinished_work <- thread.unfinished_work - 1; match thread.state with | `Available -> raise_s [%message "thread-pool thread unexpectedly available" (thread : Thread.t)] | `Helper helper_thread -> maybe_finish_helper_thread t helper_thread | `Working -> make_thread_available t thread); loop () in loop ()) ()) in Or_error.map ocaml_thread ~f:(fun ocaml_thread -> let thread_id = Thread_id.of_ocaml_thread ocaml_thread in thread.thread_id <- Some thread_id; t.num_threads <- t.num_threads + 1; Hashtbl.add_exn t.thread_by_id ~key:thread_id ~data:thread; thread) ;; let last_thread_creation_failure_at t = Option.value_map t.last_thread_creation_failure ~default:Time_ns.epoch ~f:Thread_creation_failure.at ;; let get_available_thread t = if !debug then debug_log "get_available_thread" t [%sexp_of: t]; match t.available_threads with | thread :: rest -> t.available_threads <- rest; `Ok thread | [] -> if t.num_threads = t.max_num_threads then `None_available else ( let now = Time_ns.now () in if Time_ns.Span.( < ) (Time_ns.diff now (last_thread_creation_failure_at t)) t.thread_creation_failure_lockout then `None_available else ( match create_thread t with | Ok thread -> `Ok thread | Error error -> t.last_thread_creation_failure <- Some { at = now; error }; `None_available)) ;; let inc_unfinished_work t = let unfinished_work = t.unfinished_work + 1 in t.unfinished_work <- unfinished_work; if unfinished_work > t.max_recent_unfinished_work then t.max_recent_unfinished_work <- unfinished_work ;; let default_thread_name = "thread-pool thread" let add_work ?priority ?name t doit = if !debug then debug_log "add_work" t [%sexp_of: t]; if not (is_in_use t) then error "add_work called on finished thread pool" t [%sexp_of: t] else ( let work = { Work.doit ; name = Option.value name ~default:default_thread_name ; enqueued_at = Time_ns.now () ; priority = Option.value priority ~default:t.default_priority } in inc_unfinished_work t; (match get_available_thread t with | `None_available -> Queue.enqueue t.work_queue work | `Ok thread -> assign_work_to_thread thread work); Ok ()) ;; let become_helper_thread_internal ?priority ?name t ~(get_thread : t -> Thread.t Or_error.t) = if !debug then debug_log "become_helper_thread_internal" t [%sexp_of: t]; if not (is_in_use t) then error "become_helper_thread_internal called on finished thread pool" t [%sexp_of: t] else ( match get_thread t with | Error _ as e -> e | Ok thread -> let helper_thread = { Helper_thread.default_name = Option.value name ~default:"helper_thread" ; default_priority = Option.value priority ~default:t.default_priority ; in_pool = t.id ; state = `In_use ; thread } in thread.state <- `Helper helper_thread; Ok helper_thread) ;; let create_helper_thread ?priority ?name t = become_helper_thread_internal ?priority ?name t ~get_thread:(fun t -> match get_available_thread t with | `Ok thread -> Ok thread | `None_available -> error ~strict:() "create_helper_thread could not get a thread" t [%sexp_of: t]) ;; let become_helper_thread ?priority ?name t = become_helper_thread_internal ?priority ?name t ~get_thread:(fun t -> match Hashtbl.find t.thread_by_id (Thread_id.self ()) with | Some thread -> Ok thread | None -> Or_error.error_string "become_helper_thread not called within thread-pool thread") ;; let add_work_for_helper_thread ?priority ?name t helper_thread doit = if !debug then debug_log "add_work_for_helper_thread" (helper_thread, t) [%sexp_of: Thread.t Helper_thread.t * t]; if not (Pool_id.equal t.id helper_thread.in_pool) then error "add_work_for_helper_thread called on helper thread not in pool" (helper_thread, t) [%sexp_of: Thread.t Helper_thread.t * t] else if not (is_in_use t) then error "add_work_for_helper_thread called on finished thread pool" t [%sexp_of: t] else ( match helper_thread.state with | `Finishing | `Finished -> error "add_work_for_helper_thread called on helper thread no longer in use" (helper_thread, t) [%sexp_of: Thread.t Helper_thread.t * t] | `In_use -> let { Helper_thread.thread; _ } = helper_thread in inc_unfinished_work t; Thread.enqueue_work thread { Work.name = Option.value name ~default:(Helper_thread.default_name helper_thread) ; doit ; enqueued_at = Time_ns.now () ; priority = Option.value priority ~default:(Helper_thread.default_priority helper_thread) }; Ok ()) ;; let finished_with_helper_thread t helper_thread = if !debug then debug_log "finished_with_helper_thread" (helper_thread, t) [%sexp_of: Thread.t Helper_thread.t * t]; if not (Pool_id.equal t.id helper_thread.in_pool) then raise_s [%message "finished_with_helper_thread called on helper thread not in pool" (helper_thread : Thread.t Helper_thread.t) ~thread_pool:(t : t)] else ( match helper_thread.state with | `Finishing | `Finished -> () | `In_use -> helper_thread.state <- `Finishing; maybe_finish_helper_thread t helper_thread) ;; module Stats = struct type t = { num_threads : int ; num_work_completed : int ; unfinished_work : int ; total_working_time : Time_ns.Span.t ; max_unfinished_work : int ; max_queue_wait : Time_ns.Span.t } [@@deriving sexp_of] end let get_and_reset_stats t = let current_queue_wait = match Queue.peek t.work_queue with | None -> Time_ns.Span.zero | Some work -> Work.enqueued_for work in let max_queue_wait = Time_ns.Span.max current_queue_wait t.max_recent_completed_queue_wait in let total_working_time = let total_active_working_time = Time_ns.Span.( - ) (Time_ns.Span.scale_int (Time_ns.Span.since_unix_epoch ()) t.num_working_threads) t.aggregate_working_start_time_since_epoch in Time_ns.Span.( + ) t.total_completed_working_time total_active_working_time in let stats : Stats.t = { num_threads = t.num_threads ; num_work_completed = t.num_work_completed ; unfinished_work = t.unfinished_work ; total_working_time ; max_unfinished_work = t.max_recent_unfinished_work ; max_queue_wait } in t.max_recent_unfinished_work <- t.unfinished_work; t.max_recent_completed_queue_wait <- Time_ns.Span.zero; stats ;; end (* Now we define everything to be exported, being careful to wrap everything in [Mutex.critical_section] that needs to be. *) open Internal type t = Internal.t [@@deriving sexp_of] let thread_creation_failure_lockout = Internal.thread_creation_failure_lockout let last_thread_creation_failure t = Option.map t.last_thread_creation_failure ~f:Thread_creation_failure.sexp_of_t ;; let critical_section t ~f = Mutex.critical_section t.mutex ~f:(fun () -> protect ~f ~finally:(fun () -> if !check_invariant then invariant t)) ;; let invariant t = critical_section t ~f:(fun () -> invariant t) let create ?cpu_affinity ~max_num_threads () = Result.map (create ?cpu_affinity ~max_num_threads ()) ~f:(fun t -> if !check_invariant then invariant t; t) ;; let finished_with t = critical_section t ~f:(fun () -> finished_with t) (* We do not use [critical_section] for [block_until_finished] because it is already thread safe, and we do not want it to hold [t]'s lock while blocking, because we must allow the finishing threads to acquire [t]'s lock. *) let block_until_finished t = Thread_safe_ivar.read t.finished (* We do not use [critical_section] for the record field accessors because that's thread-safe with the current OCaml runtime. *) let cpu_affinity = cpu_affinity let default_priority = default_priority let has_unstarted_work = has_unstarted_work let max_num_threads = max_num_threads let num_threads = num_threads let num_work_completed = num_work_completed let unfinished_work = unfinished_work module Helper_thread = struct open Helper_thread type t = Thread.t Helper_thread.t [@@deriving sexp_of] let default_name = default_name let default_priority = default_priority end let add_work ?priority ?name t doit = critical_section t ~f:(fun () -> add_work ?priority ?name t doit) ;; let become_helper_thread ?priority ?name t = critical_section t ~f:(fun () -> become_helper_thread ?priority ?name t) ;; let create_helper_thread ?priority ?name t = critical_section t ~f:(fun () -> create_helper_thread ?priority ?name t) ;; let add_work_for_helper_thread ?priority ?name t helper_thread doit = critical_section t ~f:(fun () -> add_work_for_helper_thread ?priority ?name t helper_thread doit) ;; let finished_with_helper_thread t helper_thread = critical_section t ~f:(fun () -> finished_with_helper_thread t helper_thread) ;; module Stats = Stats let get_and_reset_stats t = critical_section t ~f:(fun () -> get_and_reset_stats t) module Private = struct let check_invariant = check_invariant let default_thread_name = default_thread_name let is_finished = is_finished let is_in_use = is_in_use let set_last_thread_creation_failure t at = t.last_thread_creation_failure <- Some { at; error = Error.of_string "fake-error" } ;; let set_thread_creation_failure_lockout t span = t.thread_creation_failure_lockout <- span ;; end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>