package alt-ergo-lib
The Alt-Ergo SMT prover library
Install
Dune Dependency
Authors
Maintainers
Sources
alt-ergo-2.3.1.tar.gz
sha256=0fd6594f30d4e2bea97350a7906ecc2528c37e8fdd32588818a162aacc409688
md5=a0e9dda8f17c1f4f03119badd24d1bf5
doc/src/alt-ergo-lib/arith.ml.html
Source file arith.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
(******************************************************************************) (* *) (* The Alt-Ergo theorem prover *) (* Copyright (C) 2006-2013 *) (* *) (* Sylvain Conchon *) (* Evelyne Contejean *) (* *) (* Francois Bobot *) (* Mohamed Iguernelala *) (* Stephane Lescuyer *) (* Alain Mebsout *) (* *) (* CNRS - INRIA - Universite Paris Sud *) (* *) (* This file is distributed under the terms of the Apache Software *) (* License version 2.0 *) (* *) (* ------------------------------------------------------------------------ *) (* *) (* Alt-Ergo: The SMT Solver For Software Verification *) (* Copyright (C) 2013-2018 --- OCamlPro SAS *) (* *) (* This file is distributed under the terms of the Apache Software *) (* License version 2.0 *) (* *) (******************************************************************************) open Format open Options open Sig module A = Xliteral module Sy = Symbols module E = Expr module Z = Numbers.Z module Q = Numbers.Q let is_mult h = Sy.equal (Sy.Op Sy.Mult) h let mod_symb = Sy.name "@mod" module Type (X:Sig.X) : Polynome.T with type r = X.r = struct include Polynome.Make(struct include X module Ac = Ac.Make(X) let mult v1 v2 = X.ac_embed { distribute = true; h = Sy.Op Sy.Mult; t = X.type_info v1; l = let l2 = match X.ac_extract v1 with | Some { h; l; _ } when Sy.equal h (Sy.Op Sy.Mult) -> l | _ -> [v1, 1] in Ac.add (Sy.Op Sy.Mult) (v2,1) l2 } end) end module Shostak (X : Sig.X) (P : Polynome.EXTENDED_Polynome with type r = X.r) = struct type t = P.t type r = P.r let name = "arith" (*BISECT-IGNORE-BEGIN*) module Debug = struct let solve_aux r1 r2 = if debug_arith () then fprintf fmt "[arith:solve-aux] we solve %a=%a@." X.print r1 X.print r2 let solve_one r1 r2 sbs = if debug_arith () then begin fprintf fmt "[arith:solve-one] solving %a = %a yields:@." X.print r1 X.print r2; let c = ref 0 in List.iter (fun (p,v) -> incr c; fprintf fmt " %d) %a |-> %a@." !c X.print p X.print v) sbs end end (*BISECT-IGNORE-END*) let is_mine_symb sy _ty = let open Sy in match sy with | Int _ | Real _ -> true | Op (Plus | Minus | Mult | Div | Modulo | Float | Fixed | Abs_int | Abs_real | Sqrt_real | Sqrt_real_default | Sqrt_real_excess | Real_of_int | Int_floor | Int_ceil | Max_int | Max_real | Min_int | Min_real | Pow_real_int | Pow_real_real | Integer_log2 | Integer_round) -> true | _ -> false let empty_polynome ty = P.create [] Q.zero ty let is_mine p = match P.is_monomial p with | Some (a,x,b) when Q.equal a Q.one && Q.sign b = 0 -> x | _ -> P.embed p let embed r = match P.extract r with | Some p -> p | _ -> P.create [Q.one, r] Q.zero (X.type_info r) (* t1 % t2 = md <-> c1. 0 <= md ; c2. md < t2 ; c3. exists k. t1 = t2 * k + t ; c4. t2 <> 0 (already checked) *) let mk_modulo md t1 t2 p2 ctx = let zero = E.int "0" in let c1 = E.mk_builtin ~is_pos:true A.LE [zero; md] in let c2 = match P.is_const p2 with | Some n2 -> let an2 = Q.abs n2 in assert (Q.is_int an2); let t2 = E.int (Q.to_string an2) in E.mk_builtin ~is_pos:true A.LT [md; t2] | None -> E.mk_builtin ~is_pos:true A.LT [md; t2] in let k = E.fresh_name Ty.Tint in let t3 = E.mk_term (Sy.Op Sy.Mult) [t2;k] Ty.Tint in let t3 = E.mk_term (Sy.Op Sy.Plus) [t3;md] Ty.Tint in let c3 = E.mk_eq ~iff:false t1 t3 in c3 :: c2 :: c1 :: ctx let mk_euc_division p p2 t1 t2 ctx = match P.to_list p2 with | [], coef_p2 -> let md = E.mk_term (Sy.Op Sy.Modulo) [t1;t2] Ty.Tint in let r, ctx' = X.make md in let rp = P.mult_const (Q.div Q.one coef_p2) (embed r) in P.sub p rp, ctx' @ ctx | _ -> assert false let exact_sqrt_or_Exit q = (* this function is probably not accurate because it works on Z.t to compute eventual exact sqrt *) let c = Q.sign q in if c < 0 then raise Exit; let n = Q.num q in let d = Q.den q in let s_n, _ = Z.sqrt_rem n in assert (Z.sign s_n >= 0); if not (Z.equal (Z.mult s_n s_n) n) then raise Exit; let s_d, _ = Z.sqrt_rem d in assert (Z.sign s_d >= 0); if not (Z.equal (Z.mult s_d s_d) d) then raise Exit; let res = Q.from_zz s_n s_d in assert (Q.equal (Q.mult res res) q); res let default_sqrt_or_Exit q = let c = Q.sign q in if c < 0 then raise Exit; match Q.sqrt_default q with | None -> raise Exit | Some res -> assert (Q.compare (Q.mult res res) q <= 0); res let excess_sqrt_or_Exit q = let c = Q.sign q in if c < 0 then raise Exit; match Q.sqrt_excess q with | None -> raise Exit | Some res -> assert (Q.compare (Q.mult res res) q >= 0); res let mk_partial_interpretation_1 aux_func coef p_acc ty t x = let r_x, _ = X.make x in try match P.to_list (embed r_x) with | [], d -> let d = aux_func d in (* may raise Exit *) P.add_const (Q.mult coef d) p_acc | _ -> raise Exit with Exit -> let a = X.term_embed t in P.add (P.create [coef, a] Q.zero ty) p_acc let mk_partial_interpretation_2 aux_func coef p_acc ty t x y = let px = embed (fst (X.make x)) in let py = embed (fst (X.make y)) in try match P.is_const px, P.is_const py with | Some c_x, Some c_y -> P.add_const (Q.mult coef (aux_func c_x c_y)) p_acc | _ -> P.add (P.create [coef, (X.term_embed t)] Q.zero ty) p_acc with Exit -> P.add (P.create [coef, (X.term_embed t)] Q.zero ty) p_acc let rec mke coef p t ctx = let { E.f = sb ; xs; ty; _ } = match E.term_view t with | E.Not_a_term _ -> assert false | E.Term tt -> tt in match sb, xs with | (Sy.Int n | Sy.Real n) , _ -> let c = Q.mult coef (Q.from_string (Hstring.view n)) in P.add_const c p, ctx | Sy.Op Sy.Mult, [t1;t2] -> let p1, ctx = mke coef (empty_polynome ty) t1 ctx in let p2, ctx = mke Q.one (empty_polynome ty) t2 ctx in if Options.no_NLA() && P.is_const p1 == None && P.is_const p2 == None then (* becomes uninterpreted *) let tau = E.mk_term (Sy.name ~kind:Sy.Ac "@*") [t1; t2] ty in let xtau, ctx' = X.make tau in P.add p (P.create [coef, xtau] Q.zero ty), List.rev_append ctx' ctx else P.add p (P.mult p1 p2), ctx | Sy.Op Sy.Div, [t1;t2] -> let p1, ctx = mke Q.one (empty_polynome ty) t1 ctx in let p2, ctx = mke Q.one (empty_polynome ty) t2 ctx in if Options.no_NLA() && (P.is_const p2 == None || (ty == Ty.Tint && P.is_const p1 == None)) then (* becomes uninterpreted *) let tau = E.mk_term (Sy.name "@/") [t1; t2] ty in let xtau, ctx' = X.make tau in P.add p (P.create [coef, xtau] Q.zero ty), List.rev_append ctx' ctx else let p3, ctx = try let p, approx = P.div p1 p2 in if approx then mk_euc_division p p2 t1 t2 ctx else p, ctx with Division_by_zero | Polynome.Maybe_zero -> P.create [Q.one, X.term_embed t] Q.zero ty, ctx in P.add p (P.mult_const coef p3), ctx | Sy.Op Sy.Plus , [t1;t2] -> let p2, ctx = mke coef p t2 ctx in mke coef p2 t1 ctx | Sy.Op Sy.Minus , [t1;t2] -> let p2, ctx = mke (Q.minus coef) p t2 ctx in mke coef p2 t1 ctx | Sy.Op Sy.Modulo , [t1;t2] -> let p1, ctx = mke Q.one (empty_polynome ty) t1 ctx in let p2, ctx = mke Q.one (empty_polynome ty) t2 ctx in if Options.no_NLA() && (P.is_const p1 == None || P.is_const p2 == None) then (* becomes uninterpreted *) let tau = E.mk_term (Sy.name "@%") [t1; t2] ty in let xtau, ctx' = X.make tau in P.add p (P.create [coef, xtau] Q.zero ty), List.rev_append ctx' ctx else let p3, ctx = try P.modulo p1 p2, ctx with e -> let t = E.mk_term mod_symb [t1; t2] Ty.Tint in let ctx = match e with | Division_by_zero | Polynome.Maybe_zero -> ctx | Polynome.Not_a_num -> mk_modulo t t1 t2 p2 ctx | _ -> assert false in P.create [Q.one, X.term_embed t] Q.zero ty, ctx in P.add p (P.mult_const coef p3), ctx (*** <begin>: partial handling of some arith/FPA operators **) | Sy.Op Sy.Float, [prec; exp; mode; x] -> let aux_func e = let res, _, _ = Fpa_rounding.float_of_rational prec exp mode e in res in mk_partial_interpretation_1 aux_func coef p ty t x, ctx | Sy.Op Sy.Integer_round, [mode; x] -> let aux_func = Fpa_rounding.round_to_integer mode in mk_partial_interpretation_1 aux_func coef p ty t x, ctx | Sy.Op (Sy.Abs_int | Sy.Abs_real) , [x] -> mk_partial_interpretation_1 Q.abs coef p ty t x, ctx | Sy.Op Sy.Sqrt_real, [x] -> mk_partial_interpretation_1 exact_sqrt_or_Exit coef p ty t x, ctx | Sy.Op Sy.Sqrt_real_default, [x] -> mk_partial_interpretation_1 default_sqrt_or_Exit coef p ty t x, ctx | Sy.Op Sy.Sqrt_real_excess, [x] -> mk_partial_interpretation_1 excess_sqrt_or_Exit coef p ty t x, ctx | Sy.Op Sy.Real_of_int, [x] -> mk_partial_interpretation_1 (fun d -> d) coef p ty t x, ctx | Sy.Op Sy.Int_floor, [x] -> mk_partial_interpretation_1 Q.floor coef p ty t x, ctx | Sy.Op Sy.Int_ceil, [x] -> mk_partial_interpretation_1 Q.ceiling coef p ty t x, ctx | Sy.Op (Sy.Max_int | Sy.Max_real), [x;y] -> let aux_func c d = if Q.compare c d >= 0 then c else d in mk_partial_interpretation_2 aux_func coef p ty t x y, ctx | Sy.Op (Sy.Min_int | Sy.Min_real), [x;y] -> let aux_func c d = if Q.compare c d <= 0 then c else d in mk_partial_interpretation_2 aux_func coef p ty t x y, ctx | Sy.Op Sy.Integer_log2, [x] -> let aux_func q = if Q.compare_to_0 q <= 0 then raise Exit; Q.from_int (Fpa_rounding.integer_log_2 q) in mk_partial_interpretation_1 aux_func coef p ty t x, ctx | Sy.Op Sy.Pow_real_int, [x; y] -> let aux_func (c : Q.t) (d : Q.t) = assert (Q.is_int d); let n = match Z.to_machine_int (Q.to_z d) with | Some n -> n | None -> raise Exit in let sz = Z.numbits (Q.num c) + Z.numbits (Q.den c) in if sz <> 0 && abs n > 100_000 / sz then raise Exit; Q.power c n in mk_partial_interpretation_2 aux_func coef p ty t x y, ctx | Sy.Op Sy.Pow_real_real, [x; y] -> let aux_func (c : Q.t) (d : Q.t) = if not (Q.is_int d) then raise Exit; let n = match Z.to_machine_int (Q.to_z d) with | Some n -> n | None -> raise Exit in let sz = Z.numbits (Q.num c) + Z.numbits (Q.den c) in if sz <> 0 && abs n > 100_000 / sz then raise Exit; Q.power c n in mk_partial_interpretation_2 aux_func coef p ty t x y, ctx | Sy.Op Sy.Fixed, _ -> (* Fixed-Point arithmetic currently not implemented *) assert false (*** <end>: partial handling of some arith/FPA operators **) | _ -> let a, ctx' = X.make t in let ctx = ctx' @ ctx in match P.extract a with | Some p' -> P.add p (P.mult_const coef p'), ctx | _ -> P.add p (P.create [coef, a] Q.zero ty), ctx let make t = Options.tool_req 4 "TR-Arith-Make"; let ty = E.type_info t in let p, ctx = mke Q.one (empty_polynome ty) t [] in is_mine p, ctx let rec expand p n acc = assert (n >=0); if n = 0 then acc else expand p (n-1) (p::acc) let unsafe_ac_to_arith { l = rl; t = ty; _ } = let mlt = List.fold_left (fun l (r,n) -> expand (embed r)n l) [] rl in List.fold_left P.mult (P.create [] Q.one ty) mlt let rec number_of_vars l = List.fold_left (fun acc (r, n) -> acc + n * nb_vars_in_alien r) 0 l and nb_vars_in_alien r = match P.extract r with | Some p -> let l, _ = P.to_list p in List.fold_left (fun acc (_, x) -> max acc (nb_vars_in_alien x)) 0 l | None -> begin match X.ac_extract r with | Some ac when is_mult ac.h -> number_of_vars ac.l | _ -> 1 end let max_list_ = function | [] -> 0 | [ _, x ] -> nb_vars_in_alien x | (_, x) :: l -> let acc = nb_vars_in_alien x in List.fold_left (fun acc (_, x) -> max acc (nb_vars_in_alien x)) acc l let contains_a_fresh_alien xp = List.exists (fun x -> match X.term_extract x with | Some t, _ -> E.is_fresh t | _ -> false ) (X.leaves xp) let has_ac p kind = List.exists (fun (_, x) -> match X.ac_extract x with Some ac -> kind ac | _ -> false) (fst (P.to_list p)) let color ac = match ac.l with | [(_, 1)] -> assert false | _ -> let p = unsafe_ac_to_arith ac in if not ac.distribute then if has_ac p (fun ac -> is_mult ac.h) then X.ac_embed ac else is_mine p else let xp = is_mine p in if contains_a_fresh_alien xp then let l, _ = P.to_list p in let mx = max_list_ l in if mx = 0 || mx = 1 || number_of_vars ac.l > mx then is_mine p else X.ac_embed ac else xp let type_info p = P.type_info p module SX = Set.Make(struct type t = r let compare = X.hash_cmp end) let leaves p = P.leaves p let subst x t p = let p = P.subst x (embed t) p in let ty = P.type_info p in let l, c = P.to_list p in let p = List.fold_left (fun p (ai, xi) -> let xi' = X.subst x t xi in let p' = match P.extract xi' with | Some p' -> P.mult_const ai p' | _ -> P.create [ai, xi'] Q.zero ty in P.add p p') (P.create [] c ty) l in is_mine p let compare x y = P.compare (embed x) (embed y) let equal p1 p2 = P.equal p1 p2 let hash = P.hash (* symmetric modulo p 131 *) let mod_sym a b = let m = Q.modulo a b in let m = if Q.sign m < 0 then if Q.compare m (Q.minus b) >= 0 then Q.add m b else assert false else if Q.compare m b <= 0 then m else assert false in if Q.compare m (Q.div b (Q.from_int 2)) < 0 then m else Q.sub m b let map_monomes f l ax = List.fold_left (fun acc (a,x) -> let a = f a in if Q.sign a = 0 then acc else (a, x) :: acc) [ax] l let apply_subst sb v = is_mine (List.fold_left (fun v (x, p) -> embed (subst x p v)) v sb) (* substituer toutes variables plus grandes que x *) let subst_bigger x l = List.fold_left (fun (l, sb) (b, y) -> if X.ac_extract y != None && X.str_cmp y x > 0 then let k = X.term_embed (E.fresh_name Ty.Tint) in (b, k) :: l, (y, embed k)::sb else (b, y) :: l, sb) ([], []) l let is_mine_p = List.map (fun (x,p) -> x, is_mine p) let extract_min = function | [] -> assert false | [c] -> c, [] | (a, x) :: s -> List.fold_left (fun ((a, x), l) (b, y) -> if Q.compare (Q.abs a) (Q.abs b) <= 0 then (a, x), ((b, y) :: l) else (b, y), ((a, x):: l)) ((a, x),[]) s (* Decision Procedures. Page 131 *) let rec omega l b = (* 1. choix d'une variable donc le |coef| est minimal *) let (a, x), l = extract_min l in (* 2. substituer les aliens plus grand que x pour assurer l'invariant sur l'ordre AC *) let l, sbs = subst_bigger x l in let p = P.create l b Ty.Tint in assert (Q.sign a <> 0); if Q.equal a Q.one then (* 3.1. si a = 1 alors on a une substitution entiere pour x *) let p = P.mult_const Q.m_one p in (x, is_mine p) :: (is_mine_p sbs) else if Q.equal a Q.m_one then (* 3.2. si a = -1 alors on a une subst entiere pour x*) (x,is_mine p) :: (is_mine_p sbs) else (* 4. sinon, (|a| <> 1) et a <> 0 *) (* 4.1. on rend le coef a positif s'il ne l'est pas deja *) let a, l, b = if Q.sign a < 0 then (Q.minus a, List.map (fun (a,x) -> Q.minus a,x) l, (Q.minus b)) else (a, l, b) in (* 4.2. on reduit le systeme *) omega_sigma sbs a x l b and omega_sigma sbs a x l b = (* 1. on definie m qui vaut a + 1 *) let m = Q.add a Q.one in (* 2. on introduit une variable fraiche *) let sigma = X.term_embed (E.fresh_name Ty.Tint) in (* 3. l'application de la formule (5.63) nous donne la valeur du pivot x*) let mm_sigma = (Q.minus m, sigma) in let l_mod = map_monomes (fun a -> mod_sym a m) l mm_sigma in (* 3.1. Attention au signe de b : on le passe a droite avant de faire mod_sym, d'ou Q.minus *) let b_mod = Q.minus (mod_sym (Q.minus b) m) in let p = P.create l_mod b_mod Ty.Tint in let sbs = (x, p) :: sbs in (* 4. on substitue x par sa valeur dans l'equation de depart. Voir la formule (5.64) *) let p' = P.add (P.mult_const a p) (P.create l b Ty.Tint) in (* 5. on resoud sur l'equation simplifiee *) let sbs2 = solve_int p' in (* 6. on normalise sbs par sbs2 *) let sbs = List.map (fun (x, v) -> x, apply_subst sbs2 v) sbs in (* 7. on supprime les liaisons inutiles de sbs2 et on merge avec sbs *) let sbs2 = List.filter (fun (y, _) -> not (X.equal y sigma)) sbs2 in List.rev_append sbs sbs2 and solve_int p = if P.is_empty p then raise Not_found; let pgcd = P.pgcd_numerators p in let ppmc = P.ppmc_denominators p in let p = P.mult_const (Q.div ppmc pgcd) p in let l, b = P.to_list p in if not (Q.is_int b) then raise Util.Unsolvable; omega l b let is_null p = if Q.sign (snd (P.separate_constant p)) <> 0 then raise Util.Unsolvable; [] let solve_int p = try solve_int p with Not_found -> is_null p let solve_real p = try let a, x = P.choose p in let p = P.mult_const (Q.div Q.m_one a) (P.remove x p) in [x, is_mine p] with Not_found -> is_null p let unsafe_ac_to_arith { l = rl; t = ty; _ } = let mlt = List.fold_left (fun l (r, n) -> expand (embed r) n l) [] rl in List.fold_left P.mult (P.create [] Q.one ty) mlt let polynome_distribution p unsafe_mode = let l, c = P.to_list p in let ty = P.type_info p in let pp = List.fold_left (fun p (coef, x) -> match X.ac_extract x with | Some ac when is_mult ac.h -> P.add p (P.mult_const coef (unsafe_ac_to_arith ac)) | _ -> P.add p (P.create [coef,x] Q.zero ty) ) (P.create [] c ty) l in if not unsafe_mode && has_ac pp (fun ac -> is_mult ac.h) then p else pp let solve_aux r1 r2 unsafe_mode = Options.tool_req 4 "TR-Arith-Solve"; Debug.solve_aux r1 r2; let p = P.sub (embed r1) (embed r2) in let pp = polynome_distribution p unsafe_mode in let ty = P.type_info p in let sbs = if ty == Ty.Treal then solve_real pp else solve_int pp in let sbs = List.fast_sort (fun (a,_) (x,_) -> X.str_cmp x a)sbs in sbs let apply_subst r l = List.fold_left (fun r (p,v) -> X.subst p v r) r l exception Unsafe let check_pivot_safety p nsbs unsafe_mode = let q = apply_subst p nsbs in if X.equal p q then p else match X.ac_extract p with | Some _ when unsafe_mode -> raise Unsafe | Some ac -> X.ac_embed {ac with distribute = false} | None -> assert false (* p is a leaf and not interpreted *) let triangular_down sbs unsafe_mode = List.fold_right (fun (p,v) nsbs -> (check_pivot_safety p nsbs unsafe_mode, apply_subst v nsbs) :: nsbs) sbs [] let is_non_lin pv = match X.ac_extract pv with | Some { Sig.h; _ } -> is_mult h | _ -> false let make_idemp _ _ sbs lvs unsafe_mode = let sbs = triangular_down sbs unsafe_mode in let sbs = triangular_down (List.rev sbs) unsafe_mode in (*triangular up*) let sbs = List.filter (fun (p,_) -> SX.mem p lvs || is_non_lin p) sbs in (* This assert is not TRUE because of AC and distributivity of '*' assert (not (Options.enable_assertions ()) || X.equal (apply_subst a sbs) (apply_subst b sbs)); *) List.iter (fun (p, _) -> if not (SX.mem p lvs) then (assert (is_non_lin p); raise Unsafe) )sbs; sbs let solve_one pb r1 r2 lvs unsafe_mode = let sbt = solve_aux r1 r2 unsafe_mode in let sbt = make_idemp r1 r2 sbt lvs unsafe_mode in (*may raise Unsafe*) Debug.solve_one r1 r2 sbt; {pb with sbt = List.rev_append sbt pb.sbt} let solve r1 r2 pb = let lvs = List.fold_right SX.add (X.leaves r1) SX.empty in let lvs = List.fold_right SX.add (X.leaves r2) lvs in try if debug_arith () then fprintf fmt "[arith] Try solving with unsafe mode.@."; solve_one pb r1 r2 lvs true (* true == unsafe mode *) with Unsafe -> try if debug_arith () then fprintf fmt "[arith] Cancel unsafe solving mode. Try safe mode@."; solve_one pb r1 r2 lvs false (* false == safe mode *) with Unsafe -> assert false let make t = if Options.timers() then try Timers.exec_timer_start Timers.M_Arith Timers.F_make; let res = make t in Timers.exec_timer_pause Timers.M_Arith Timers.F_make; res with e -> Timers.exec_timer_pause Timers.M_Arith Timers.F_make; raise e else make t let solve r1 r2 pb = if Options.timers() then try Timers.exec_timer_start Timers.M_Arith Timers.F_solve; let res = solve r1 r2 pb in Timers.exec_timer_pause Timers.M_Arith Timers.F_solve; res with e -> Timers.exec_timer_pause Timers.M_Arith Timers.F_solve; raise e else solve r1 r2 pb let print = P.print let fully_interpreted sb = match sb with | Sy.Op (Sy.Plus | Sy.Minus) -> true | _ -> false let term_extract _ = None, false let abstract_selectors p acc = let p, acc = P.abstract_selectors p acc in is_mine p, acc (* this function is only called when some arithmetic values do not yet appear in IntervalCalculus. Otherwise, the simplex with try to assign a value *) let assign_value = let cpt_int = ref Q.m_one in let cpt_real = ref Q.m_one in let max_constant distincts acc = List.fold_left (fun acc x -> match P.is_const (embed x) with None -> acc | Some c -> Q.max c acc) acc distincts in fun r distincts eq -> if P.is_const (embed r) != None then None else if List.exists (fun (t,x) -> let symb, ty = match E.term_view t with | E.Not_a_term _ -> assert false | E.Term tt -> tt.E.f, tt.E.ty in is_mine_symb symb ty && X.leaves x == [] ) eq then None else let term_of_cst, cpt = match X.type_info r with | Ty.Tint -> E.int, cpt_int | Ty.Treal -> E.real, cpt_real | _ -> assert false in cpt := Q.add Q.one (max_constant distincts !cpt); Some (term_of_cst (Q.to_string !cpt), true) let pprint_const_for_model = let pprint_positive_const c = let num = Q.num c in let den = Q.den c in if Z.is_one den then Z.to_string num else Format.sprintf "(/ %s %s)" (Z.to_string num) (Z.to_string den) in fun r -> match P.is_const (embed r) with | None -> assert false | Some c -> let sg = Q.sign c in if sg = 0 then "0" else if sg > 0 then pprint_positive_const c else Format.sprintf "(- %s)" (pprint_positive_const (Q.abs c)) let choose_adequate_model t r l = if debug_interpretation() then fprintf fmt "[arith] choose_adequate_model for %a@." E.print t; let l = List.filter (fun (_, r) -> P.is_const (embed r) != None) l in let r = match l with | [] -> (* We do this, because terms of some semantic values created by CS are not created and added to UF *) assert (P.is_const (embed r) != None); r | (_,r)::l -> List.iter (fun (_,x) -> assert (X.equal x r)) l; r in r, pprint_const_for_model r end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>