package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.3.tar.gz
sha256=062f33c55ef39706c4290dff67d5a00bf009051fd757f9352be527f629ae21fc
md5=eb4edc4d6b7e15b83d6397bd34994153
doc/src/alba.core/term_trie.ml.html
Source file term_trie.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
open Fmlib module Int_map = Common.Int_map module Sort_map = Finite_map.Make (Term.Sort) module Value_map = Finite_map.Make (Term.Value) (* Term_trie --------- The term all (A: Any) (a: A) (B: Any) (f: A -> B): B in its long form all (A: Any): all (a: A): all (B: Any): all (f: all (_: A): B): B has the preorder traversal all Any all A all Any all all A B B If the term is in the trie, then there must be a corresponding path from the root. *) type 'a t = { sorts: ('a base) Sort_map.t; bounds: ('a base) Int_map.t; globals: ('a base) Int_map.t; applications: 'a t option; typeds: 'a t option; lambdas: 'a t option; products: 'a t option; } and 'a base = | End of 'a | Next of 'a t let empty: 'a t = { sorts = Sort_map.empty; bounds = Int_map.empty; globals = Int_map.empty; applications = None; typeds = None; lambdas = None; products = None; } type 'a find_cont = 'a t -> 'a option let find (term: Term.t) (n: int) (trie: 'a t): 'a option = let open Option in let find_base k base = base >>= fun base -> match base, k with | End a, None -> Some a | Next next, Some k -> k next | _, _ -> assert false (* Illegal call! *) in let rec find term nb (k: 'a find_cont option) trie: 'a option = let open Term in match term with | Value _ -> assert false (* nyi *) | Sort s -> find_base k (Sort_map.maybe_find s trie.sorts) | Variable i when i < nb -> find_base k (Int_map.maybe_find i trie.bounds) | Variable i -> find_base k (Int_map.maybe_find (Term.bruijn_convert (i - nb) n) trie.globals) | Typed (exp, tp) -> trie.typeds >>= find exp nb (Some (find tp nb k)) | Appl (f, arg, _ ) -> trie.applications >>= find f nb (Some (find arg nb k)) | Lambda (tp, exp, _ ) -> trie.lambdas >>= find tp nb (Some (find exp (nb + 1) k)) | Pi (tp, res, _) -> trie.products >>= find tp nb (Some (find res (nb + 1) k)) | Where (_, _, _, _) -> assert false (* nyi *) in find term 0 None trie let map_result (f: 'a -> 'b): ('a, 'e) result -> ('b, 'e) result = function | Ok a -> Ok (f a) | Error e -> Error e type 'a add_cont = 'a t -> ('a t, 'a) result let add_base (a: 'a) (k: 'a add_cont option) (add: 'a base -> 'a t) (base: 'a base option) : ('a t, 'a) result = match base with | None -> ( match k with | None -> Ok (add (End a)) | Some k -> map_result (fun next -> add (Next next)) (k empty) ) | Some base -> match base, k with | End a, None -> Error a | Next next, Some k -> k next | _, _ -> assert false (* Illegal call! *) let add_compound (add_outer: 'a t -> 'a t) (add_inner: 'a t -> ('a t, 'a) result) (inner: 'a t option) : ('a t, 'a) result = map_result add_outer ( match inner with | None -> add_inner empty | Some inner -> add_inner inner ) let add_new (term: Term.t) (n: int) (a: 'a) (trie: 'a t): ('a t, 'a) result = let rec add term nb k trie = let open Term in match term with | Value _ -> assert false (* nyi *) | Sort s -> add_base a k (fun value -> {trie with sorts = Sort_map.add s value trie.sorts}) (Sort_map.maybe_find s trie.sorts) | Variable i when i < nb -> add_base a k (fun value -> {trie with bounds = Int_map.add i value trie.bounds}) (Int_map.maybe_find i trie.bounds) | Variable i -> let level = Term.bruijn_convert (i - nb) n in add_base a k (fun value -> {trie with globals = Int_map.add level value trie.globals}) (Int_map.maybe_find level trie.globals) | Typed (exp, tp) -> add_compound (fun res -> {trie with typeds = Some res}) (add exp nb (Some (add tp nb k))) trie.typeds | Appl (f, arg, _ ) -> add_compound (fun res -> {trie with applications = Some res}) (add f nb (Some (add arg nb k))) trie.applications | Lambda (tp, exp, _ ) -> add_compound (fun res -> {trie with lambdas = Some res}) (add tp nb (Some (add exp (nb + 1) k))) trie.lambdas | Pi (tp, res, _) -> add_compound (fun res -> {trie with products = Some res}) (add tp nb (Some (add res (nb + 1) k))) trie.products | Where (_, _, _, _) -> assert false (* nyi *) in add term 0 None trie
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>